The cross-β amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of β-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-β amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale-including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy-we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent β-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils. It is well established that a wide variety of peptides or proteins without any evident sequence similarity can self-assemble into amyloid fibrils (1, 2). These structures have many common characteristics, typically being 100-200 Å in diameter and containing a universal "cross-β" core structure composed of arrays of β-sheets running parallel to the long axis of the fibrils (3). These fibrillar states are highly ordered, with persistence lengths of the order of microns (4) and mechanical properties comparable to those of steel and dragline silk, and much greater than those typical of biological filaments such as actin and microtubules (5). Amyloid fibrils can also possess very high kinetic and thermodynamic stabilities, often exceeding those of the functional folded states of proteins (6), as well as a greater resistance to degradation by chemical or biological means (7). Several functional forms of proteins that exploit these properties have been observed in biological systems (8). More generally, however, the conversion of normally soluble functional proteins into the amyloid state is associated with many debilitating human disorders, ranging from Alzheimer's disease to type II diabetes (1, 9). Our understanding of the nature of this type of filamentous aggregate has greatly improved in recent years (3,(10)(11)(12)(13)(14)(15)(16)(17)(18)(19), particularly through the structural determination of their elementary β-strand building blocks (20) and the characterization of their assembly into cross-β steric zippers (21,22). However, a thorough understanding of the hierarchical assembly of these individual structural elements into fully-formed fibrils, which display polymorphism but possess a range of generic features (23), has so far been limited by the absence of a complete atomicresolution cross-β amyloid structures (2).We report here the simultaneous determination of the a...
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range 13C-13C correlation spectra and a third based on the identification of intermolecular interactions in 13C-15N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3), that efficient 13C-13C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The 13C-13C experiments are corroborated by 15N-13C correlation spectrum obtained from a mixed [15N,12C]/[14N,13C] sample which directly quantifies interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular 15N-13C constraints present in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total the experiments provide 111 intermolecular 13C-13C and 15N-13C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.
Quantitative solid-state NMR distance measurements in strongly coupled spin systems are often complicated due to the simultaneous presence of multiple noncommuting spin interactions. In the case of zeroth-order homonuclear dipolar recoupling experiments, the recoupled dipolar interaction between distant spins is attenuated by the presence of stronger couplings to nearby spins, an effect known as dipolar truncation. In this article, we quantitatively investigate the effect of dipolar truncation on the polarization-transfer efficiency of various homonuclear recoupling experiments with analytical theory, numerical simulations, and experiments. In particular, using selectively 13 C-labeled tripeptides, we compare the extent of dipolar truncation in model three-spin systems encountered in protein samples produced with uniform and alternating labeling. Our observations indicate that while the extent of dipolar truncation decreases in the absence of directly bonded nuclei, two-bond dipolar couplings can generate significant dipolar truncation of small, long-range couplings. Therefore, while alternating labeling alleviates the effects of dipolar truncation, and thus facilitates the application of recoupling experiments to large spin systems, it does not represent a complete solution to this outstanding problem.
The antibacterial peptide microcin J25 (MccJ25) inhibits bacterial transcription by binding within, and obstructing, the nucleotide-uptake channel of bacterial RNA polymerase. Published covalent and three-dimensional structures indicate that MccJ25 is a 21-residue cycle. Here, we show that the published covalent and three-dimensional structures are incorrect, and that MccJ25 in fact is a 21-residue "lariat protoknot", consisting of an 8-residue cyclic segment followed by a 13-residue linear segment that loops back and threads through the cyclic segment. MccJ25 is the first example of a lariat protoknot involving a backbone-side chain amide linkage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.