This study determined the level of mercury, lead, and zinc in baby teeth of children with autism spectrum disorder (n = 15, age 6.1 +/- 2.2 yr) and typically developing children (n = 11, age = 7 +/- 1.7 yr). Children with autism had significantly (2.1-fold) higher levels of mercury but similar levels of lead and similar levels of zinc. Children with autism also had significantly higher usage of oral antibiotics during their first 12 mo of life, and possibly higher usage of oral antibiotics during their first 36 mo of life. Baby teeth are a good measure of cumulative exposure to toxic metals during fetal development and early infancy, so this study suggests that children with autism had a higher body burden of mercury during fetal/infant development. Antibiotic use is known to almost completely inhibit excretion of mercury in rats due to alteration of gut flora. Thus, higher use of oral antibiotics in the children with autism may have reduced their ability to excrete mercury, and hence may partially explain the higher level in baby teeth. Higher usage of oral antibiotics in infancy may also partially explain the high incidence of chronic gastrointestinal problems in individuals with autism.
No abstract
1,3-Butadiene is a major industrial chemical that has been shown to be a carcinogen at multiple sites in mice and rats at concentrations as low as 6.25 ppm. Occupational exposures have been reduced in response to these findings, but it may not be possible to determine by using traditional epidemiological methods, whether current exposure levels are adequate for protection of worker health. However, it is possible to evaluate the biological significance of exposure to genotoxic chemicals at the time of exposure by measuring levels of genetic damage in exposed populations. We have conducted a pilot study to evaluate the effects of butadiene exposure on the frequencies of lymphocytes containing mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt locus in workers in a butadiene production plant. At the same time, urine specimens from the same individuals were collected and evaluated for the presence of butadiene-specific metabolites. Eight workers from areas of the plant where the highest exposures to butadiene occur were compared to five workers from plant areas where butadiene exposures were low. In addition, six subjects with no occupational exposure to butadiene were also studied as outside controls. All of the subjects were nonsmokers. An air sampling survey conducted for 6 months, and ending about 3 months before the study, indicated that average butadiene levels in the air of the high-exposure areas were about 3.5 ± 7.5 ppm. They were 0.03 ± 0.03 ppm in the low-exposure areas. Peripheral blood lymphocytes from the subjects were assayed using an autoradiographic test for hprt mutations. The weighted mean variant (mutant) frequency (Vf) (± SE) in the eight exposed subjects was 3.84(±0.70) x 106 per evaluatable cell, as compared to 1.16±(0.27) x 104 in the low-exposed and 1.03(±0.07) x 106 in the outside controls. The Vf of the low-exposed controls and the outside controls were not significantly different, but the mean frequency of mutant lymphocytes in the seven exposed subjects was significantly higher when compared to the mean Vf of the nonexposed controls (p<0.01) and the low-exposed controls (p<0.05). A single metabolite of butadiene, 1,2-dihydroxy-4-(N-acetlylcysteinyl-S) butane, was detected in the urine of all subjects. The concentration in the urine of the workers in the high-exposed group was significantly greater than in the low-exposed or nonexposed groups. The correlation between the level of the metabolite in urine and the frequency of hprt mutants was r = 0.85. The observation of an elevated Vf in the exposed subjects and the strong correlation of Vf with the level of excreted metabolite suggests that butadiene exposures under these conditions were sufficient to induce somatic cell mutations. This degree of increase in Vf is similar to what we have observed in cigarette smokers. The results available at this time indicate that current levels of occupational exposure to butadiene may not be sufficiently low to protect workers from the adverse effects that may result from exposure...
The acute toxic effects of hydrogen sulfide have been known for decades. However, studies investigating the adverse health effects from chronic, low-level exposure to this chemical are limited. In this study, the authors compared symptoms of adverse health effects, reported by residents of two communities exposed mainly to chronic, low-levels of industrial sources of hydrogen sulfide, to health effects reported by residents in three reference communities in which there were no known industrial sources of hydrogen sulfide. Trained interviewers used a specially created, menu-driven computer questionnaire to conduct a multi-symptom health survey. The data-collection process and questions were essentially the same in the reference and exposed communities. The two exposed communities responded very similarly to questions about the major categories. When the authors compared responses of the exposed communities with those of the reference communities, 9 of the 12 symptom categories had iterated odds ratios greater than 3.0. The symptoms related to the central nervous system had the highest iterated odds ratio (i.e., 12.7; 95% confidence interval = 7.59, 22.09), followed by the respiratory category (odds ratio = 11.92; 95% confidence interval = 6.03, 25.72), and the blood category (odds ratio = 8.07; 95% confidence interval = 3.64, 21.18). Within the broader health categories, individual symptoms were also elevated significantly. This study, like all community-based studies, had several inherent limitations. Limitations, and the procedures the authors used to minimize their effects on the study outcomes, are discussed. The results of this study emphasize the need for further studies on the adverse health effects related to long-term, chronic exposure to hydrogen sulfide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.