MgH(2) has too high an operating temperature for many hydrogen storage applications. However, MgH(2) ball-milled with Ge leads to a thermodynamic destabilisation of >50 kJ mol(-1)(H(2)). This has dramatically reduced the temperature of dehydrogenation to 130 °C, opening up the potential for Mg-based multicomponent systems as hydrogen stores for a range of applications.
LiH is a highly stable light metal hydride with a hydrogen capacity of 12.5 wt%. However, having a dehydrogenation enthalpy, ΔH(dehy), of 181.2 kJ mol(-1)(H2) and a resultant T(1 bar) of 944 °C, it is not a practical hydride for most hydrogen storage applications. In the work presented here, germanium has been found to dramatically reduce the dehydrogenation temperature for LiH down to just 270 °C. The enthalpy of dehydrogenation was reduced through the formation of lithium germanides. The reaction pathway was identified in this study using in situ powder neutron diffraction, showing the successive formation of more Li-rich germanides, following the series: LiGe, Li4Ge2H, Li9Ge4, and Li7Ge2. The enthalpy of formation for these germanides provides the thermodynamic tuning to reduce the ΔH(dehy) for the system. The 3LiH-Ge system investigated is found to be reversible with a maximum capacity of 3.0 ± 0.1 wt%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.