Soils with highly gypsum content signify known as soils that exhibit collapsibility and sudden failure when being submerged to wetting. Many of the constructions built on this soil showed cracked and/or collapsed at some parts as these soils immersed or leached with water. The utilization of extremely fine materials, for example, Microscale or Nanoscale, is generally utilized these days. This research compared the use of Silica fume (SF) (micro material) and Nano Silica fume (NSF) (Nanomaterial) to explore the capability of these very fine materials to mend the shear strength and collapsibility properties of highly gypseous soils. The soil as Poorly Graded Sand (SP) was used, with a gypsum amount equal to 62%. A succession of direct shear tests and double odometer tests were carried on dry and submarined specimens of soil at various percentages of SF and NSF. The obtained results indicate that mixing the highly gypseous soils with SF or NSF improved the engineering properties of these soils, especially for the wet condition. The average increment in apparent cohesion when adding SF (5-20) percentage varies between (140-310) % in dry soil and (20-40) % in soaked soil. Same results obtained when mixing the gypseous soils with (1-5) % of NSF. Also, the Nanomaterial provided an improvement of the friction angle in dry and submerged cases respectively. Considering that, the SF gives adverse results upon the friction angle of the soil. The SF and the NSF both condensed the dangers of gypseous soil collapsibility. Consequently, the use of NSF can be assertively suggested to improve the engineering characteristics of highly gypseous soils when compared with SF, where only mixing of 3% of NSF gives the best results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.