Phytopathogen infection alters primary metabolism status and plant development. The alternative oxidase (AOX) has been hypothesized to increase under pathogen attack preventing reductions, thus optimizing photosynthesis and growth. In this study, two genotypes of Medicago truncatula, one relatively resistant (Jemalong A17) and one susceptible (TN1.11), were infected with Fusarium oxysporum and Rhizoctonia solani. The in vivo foliar respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) were measured using the oxygen isotope fractionation. Gas exchange and photosynthesis‐related parameters were measured and calculated together with antioxidant enzymes activities and organic acids contents. Our results show that the in vivo activity of AOX (valt) plays a role under fungal infection. When infected with R. solani, the increase of valt in A17 was concomitant to an increase in net assimilation, in mesophyll conductance, to an improvement in the maximum velocity of Rubisco carboxylation and to unchanged malate content. However, under F. oxysporum infection, the induced valt was accompanied by an enhancement in the antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPX; EC1.11.1.7), activities and to an unchanged tricarboxylic acid cycle intermediates. These results provide new insight into the role of the in vivo activity of AOX in coordinating primary metabolism interactions that, partly, modulate the relative resistance of M. truncatula to diseases caused by soil‐borne pathogenic fungi.
Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes’ activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.
A faba bean rhizospheric Pseudomonas aeruginosa isolate RZ9 was used for studying its antifungal activity and protecting effects of faba bean and common bean against the root pathogen Fusarium culmorum strain MZB47. The dual culture tests showed that RZ9 inhibits MZB47 in vitro growth by 56%. When mixing RZ9 cell suspension with MZB47 macroconidia at equal proportion, the macroconidia viability was reduced with 70%. Pathogenicity tests conducted in sterile conditions showed that MZB47 caused an intense root rotting in faba bean 'Aquadulce' plantlets and a slight level in common bean 'Coco blanc'. This was associated to significant decreases in plant growth only in 'Aquadulce', reducing shoot dry weight (DW) by 82% and root DW by 70%. In soil samples, MZB47 caused severe root rotting and induced significant decreases in shoot DW (up to 51%) and root DW (up to 60%) for both beans. It was associated to a decrease in nodule number by 73% and 52% for faba bean and common bean, respectively. Biocontrol assays revealed that the inoculation of RZ9 to MZB47-treated plantlets enhanced shoot DWs (25% and 110%) and root DWs (29% and 67%), in faba bean and common bean, respectively. Moreover, root rotting levels decreased and nodule number increased in treated compared to untreated plantlets. Collected data highlighted the disease severity of F. culmorum and demonstrated the potential of using RZ9 in controlling Fusaria root diseases in beans. Thereby, the current study represents the first report on the biocontrol effectiveness of P. aeruginosa against F. culmorum in beans.Additional keywords: biocontrol; root rot; Vicia faba; Phaseolus vulgaris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.