We study a phase retrieval problem in the Poisson noise model. Motivated by the PhaseLift approach, we approximate the maximumlikelihood estimator by solving a convex program with a nuclear norm constraint. While the Frank-Wolfe algorithm, together with the Lanczos method, can efficiently deal with nuclear norm constraints, our objective function does not have a Lipschitz continuous gradient, and hence existing convergence guarantees for the Frank-Wolfe algorithm do not apply. In this paper, we show that the Frank-Wolfe algorithm works for the Poisson phase retrieval problem, and has a global convergence rate of O(1/t), where t is the iteration counter. We provide rigorous theoretical guarantee and illustrating numerical results.
Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated structured sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.
Abstract-We consider minimization problems that are compositions of convex functions of a vector x ∈ R N with submodular set functions of its support (i.e., indices of the non-zero coefficients of x). Such problems are in general difficult for large N due to their combinatorial nature. In this setting, existing approaches rely on "convexifications" of the submodular set function based on the Lovász extension for tractable approximations. In this paper, we first demonstrate that such convexifications can fundamentally change the nature of the underlying submodular regularization. We then provide a majorizationminimization framework for the minimization of such composite objectives. For concreteness, we use the Ising model to motivate a submodular regularizer, establish the total variation semi-norm as its Lovász extension, and numerically illustrate our new optimization framework.
We propose a Bayesian approach where the signal structure can be represented by a mixture model with a submodular prior. We consider an observation model that leads to Lipschitz functions. Due to its combinatorial nature, computing the maximum a posteriori estimate for this model is NP-Hard, nonetheless our converging majorization-minimization scheme yields approximate estimates that, in practice, outperform state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.