Chilling (Ch) and salinity (S) are challenging stresses affecting plant physiology, growth, and productivity. The current study investigated the effects of these two stresses, singly and in combination, on photosynthetic performance and ultrastructure of chloroplast of faba beans (Vicia faba L. Cv. Aspani). Plants were exposed to 3 °C and 120 mM NaCl for 16 h in an optimized soil mixture (sand:clay 2:1) under optimized conditions. Results showed that both Ch and S significantly reduced photosynthetic rates, Fv/Fm, chlorophyll content, stomatal index, and stomatal conductance. Chilling caused changes in chloroplast ultrastructure (swelling, ruptured envelopes, and shrunk lamellae), while salinity caused more deformation of the thylakoid membrane and disorganization of the grana structure. However, there was an antagonistic effect between Ch x S. The tolerance of plant to 120 mM NaCl, in the present study, was improved by exposure to Ch which rather allowed the maintenance of chloroplast ultrastructure and morphology of stomata. Moreover, using SEM and TEM gave an effective insight of the ultrastructural damage in plant cells under stress and helps to consider the underlying mechanisms of stress effects. Our results suggest that Ch mitigates the noxious effect of S on the photosynthetic performance of Vicia faba plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.