The metabolic potency of fungi as camptothecin producer elevates their prospective use as an industrial platform for commercial production, however, the loss of camptothecin productivity by fungi with the storage and subculturing are the major obstacle. Thus, screening for endophytic fungal isolates inhabiting ethnopharmacological plants with an obvious metabolic stability and sustainability for camptothecin biosynthesis could be one of the most feasible paradigms. Aspergillus terreus ON908494.1, an endophyte of Cestrum parqui was morphologically and molecularly verified, displaying the most potent camptothecin biosynthetic potency. The chemical identity of A. terreus camptothecin was confirmed from the HPLC, FTIR and LC–MS/MS analyses, gave the same molecular structure and mass fragmentation patterns of authentic one. The purified putative camptothecin displayed a strong anticancer activity towards HepG-2 and MCF-7 with IC50 values 0.96 and 1.4 µM, respectively, with no toxicity to OEC normal cells. As well as, the purified camptothecin displayed a significant antifungal activity towards fungal human pathogen Candida albicans, Aspergillus flavus, and A. parasiticus, ensuring the unique structural activity relationships of A. terreus camptothecin, as a powerful dually active anticancer and antimicrobial agent. The camptothecin productivity of A. terreus was maximized by bioprocessing with Plackett–Burman design, with an overall 1.5 folds increment (170.5 µg/L), comparing to control culture. So, the optimal medium components for maximum yield of camptothecin by A. terreus was acid why (2.0 mL/L), Diaion HP20 (2.0 g/L), Amberlite XAD (2.0 g/L), dextrin (5.0 g/L), glucose (10.0 g/L), salicylic acid (2.0 g/L), serine (4.0 g/L), cysteine (4.0 g/L) and glutamate (10.0 g/L), at pH 6 for 15 days incubation. By the 5th generation of A. terreus, the camptothecin yield was reduced by 60%, comparing to zero culture. Interestingly, the productivity of camptothecin by A. terreus has been completely restored and over increased (210 µg/L), comparing to the 3rd generation A. terreus (90 µg/L) upon addition of methanolic extracts of Citrus limonum peels, revealing the presence of some chemical signals that triggers the camptothecin biosynthetic machinery. The feasibility of complete restoring of camptothecin biosynthetic-machinery of A. terreus for stable and sustainable production of camptothecin, pave the way for using this fungal isolate as new platform for scaling-up the camptothecin production.
ACRO-and micromorphological characteristics of cypsela in 13 species and one subspecies representing genera:, Reichardia Roth and Sonchus L.; belonging to the two tribes Cardueae and Cichorieae of the Asteraceae, were examined under stereomicroscopy and scanning electron microscopy (SEM). The cypsela macromorphological features including; cypsela length measurements, colour, shape, surface texture and the number of ribs when present as well as the abscission scar characteristics and details of the surface microsculpture peculiarities were investigated. The cypsela length and colour presented a minor taxonomic value. However, the other remaining features were proved to be primarily diagnostic at the species level and sometimes at the genus level but not distinctive for any of the two tribes. In addition, these features were very useful in the precise technical identification of the examined cypselae. An identification key for the studied taxa, based on the investigated aspects, was presented.
The genus Cassia and Senna have been classified under subfamily Caesalpinioideae of family Fabaceae (Leguminosae) of order Fabales. There is a scarce taxonomical studies of the genus Cassia and Senna inhabiting Egyptian environments, thus, the main objective of the current was to revise and authenticate the phylogenetic relationship between studied taxa of the species of the genera Cassia and Senna in Egypt using the recent tools of ITS barcoding, RAPD analysis and metabolic profiling, in comparing to the traditional taxonomical features. From the cluster analysis of the traditional 27 morphological characters, the studied taxa were categorized into two major clades with an average taxonomic distance of 4.3. The clade I include Cassia fistula, C. renigera, C. javanica L subsp. nodosa and C. roughiia that belongs to series Obolospermae, and C. grandis that belongs to series Grandes. The clade (II) includes Senna surattensis and S. alata at taxonomic level 3.6. The taxonomical description of the studied taxa was confirmed from the molecular analysis of ITS sequences and RAPD analysis. The ITS sequences of the tested plants species C. fistula L, C. grandis MD4, C. javanica subsp. nodosa MD7, C. roxburghii MD5, C. renigera MD5 were deposited at genbank with accession numbers MW367973, MZ960447, MW386305, MW326753 and MW32685, respectively. While, the ITS sequences of the S. surrattensis and S. alata were deposited into genbank accession # MD14 MW367670 and MD20 MW412635, respectively. Thus, from the molecular analysis, two clades were clearly separated into Clade I of Cassia and Clade II of Senna. The cluster I represented by C. fistula, C. renigera, C. roxburghii, and C. javanica sub nodosa, and the cluster II represented by S. alata and S. surattensis. From the PCA of RAPD, a clearly discrimination between the two Taxa was observed revealing the characteristic grouping of Cassia and Senna. The species Senna alata and Senna surattensis were grouped together, but the species of C. renigera, C. javanica, C. roxburghii and C. grandis was grouped on a distinct group. The separation of Cassia and Senna species into two clusters verify the segregation of the genus Cassia L. senso lato into two distinct genera namely Senna P. and Cassia L. The morphological, molecular traits of the studied plants were authenticated from the metabolic profiling by GC-MS analysis. Among the 23 identified metabolites, four compounds namely hexadecanoic acid, methyl ester, 9-Octadecenoic acid (Z)-ethyl ester and Vitamin E were detected with fluctuated concentrations, among C. fistula, C. grandis, C. javanica subsp. nodosa and C. roxburghii. Conclusively, the traditional morphological features, molecular barcoding using ITS sequences, RAPD analysis and metabolic traits by GC-MS analysis, authenticates the taxonomical diversity of the genus Cassia and Senna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.