Nation-wide, opioid misuse among pregnant women has risen 4-fold from 1999 to 2014, with commensurate increase in neonates hospitalized for Neonatal Abstinence Syndrome (NAS). NAS occurs when a fetus exposed to opioids in utero goes into rapid withdrawal after birth. NAS treatment via continued postnatal opioid exposure has been suggested to worsen neurodevelopmental outcomes. We developed a novel model to characterize the impact of in utero and postnatal oxycodone (Oxy) exposure on early behavior and development. Via subcutaneous pump implanted before breeding, C57BL/6J dams were infused with oxycodone at 10 mg/kg/day from conception through pup-weaning. At birth, in utero oxy-exposed pups were either cross-fostered (paired with non-oxy exposed dams) to model opioid abstinence (short-oxy) or reared by their biological dams still receiving Oxy to model continued postnatal opioid exposure (long-oxy). Offspring from vehicle-exposed dams served as cross-fostered (short-veh) or biologically-reared (long-veh) controls. Short-oxy exposure resulted in sex-dependent weight reductions and altered spectrotemporal features of isolation-induced ultrasonic vocalization (USV). Meanwhile, long-oxy pups exhibited reduced weight and sex-differential delays in righting reflex. Specifically, long-oxy female offspring exhibited increased latency to righting reflex. Long-oxy pups also showed decreases in number of USV calls, and changes to spectrotemporal USV features. Overall, ontogenetic Oxy exposure was associated with impaired attainment of gross and sensorimotor milestones, as well as alterations in communication and affective behaviors, indicating a need for therapeutic interventions. The model developed here will enable studies of withdrawal physiology and opioid-mediated mechanisms underlying these neurodevelopmental deficits.
With the rising prevalence of multidrug-resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g. serum half-life, oral absorption, solubility, toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating “prodrugs” that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, S. schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologs are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species-or genus-level prodrug targeting strategies.
With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating “prodrugs” that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.