Nephrotoxicity is defining as rapid deterioration in the kidney function due to toxic effect of medications and chemicals. There are various forms, and some drugs may affect renal function in more than one way. Nephrotoxins are substances displaying nephrotoxicity. Different mechanisms lead to nephrotoxicity, including renal tubular toxicity, inflammation, glomerular damage, crystal nephropathy, and thrombotic microangiopathy. The traditional markers of nephrotoxicity and renal dysfunction are blood urea and serum creatinine which are regarded as low sensitive in the detection of early renal damage. Thus, the detection of the initial renal injures required new biomarkers which are more sensitive and highly specific that gives an insight into the site of underlying renal damage. Kidney injury molecule-1, Cystatin C, and neutrophil gelatinase-associated lipocalin sera levels are more sensitive than blood urea and serum creatinine in the detection of acute kidney injury during nephrotoxicity.
BACKGROUND: The renin–angiotensin system (RAS) is essential in renal physiology; however, disturbance of the RAS is one of the chief pathways involved in renal injury. Dysregulation of RAS may result in both glomerular and tubulointerstitial injuries through direct effects of angiotensin II (Ang II) type 1 receptor. Irbesartan and other Ang II blockers have renoprotective effect through reduction of on renal inflammations. Therefore, the aim of the present study was to demonstrate the renoprotective effect of irbesartan on gentamicin-induced nephrotoxicity in rats concerning the oxidative stress.
MATERIALS AND METHODS: Thirty Sprague-Dawley Male rats divided into three groups, Group I (10 rats) treated with distilled water, Group II (10 rats) treated with gentamicin, and Group III (10 rats) treated with gentamicin plus irbesartan for 12 days. Blood urea, serum creatinine, serum malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecules (KIM-1), and cystatin-c were measured in each group.
RESULTS: Irbesartan significantly reduced blood urea, serum creatinine, serum MDA, NGAL, KIM-1, and cystatin-c P < 0.05. Irbesartan significantly increases SOD P < 0.05 without significant effect in elevation of GSH serum levels.
CONCLUSION: Irbesartan has renoprotective effect in attenuation of acute nephrotoxicity through modulation of oxidative stress and antioxidant capacity in rats.
Primary hypothyroidism is associated with oxidative stress and insufficient antioxidant capacity. This study was conducted to evaluate the effects of levothyroxine replacement therapy on paraoxonase 1 (PON-1) serum levels in a patients with primary hypothyroidism. Thirty-one patients with primary hypothyroidism compared to 20 healthy controls were recruited from. A venous blood sample were taken after an overnight fasting for biochemical parameters, before and after starting levothyroxine therapy (100 μ g/day) for 3 months duration. The biochemical variables were PON-1 serum levels, lipid profiles, triiodothyronine (T3), thyroxin (T4), and thyroid stimulating hormone (TSH) serum levels. Levothyroxine replacement therapy leads to a significant amelioration of thyroid functions, lipid profile, cardiometabolic measures P < 0.05 in patients with primary hypothyroidism. Levothyroxine leads to significant elevation in PON-1 serum levels from 188.42 ± 19.81 (U/mL) to 361.23 ± 33.62 (U/mL) P < 0.0001. This study concluded that levothyroxine replacement therapy significantly increases PON-1 serum levels in patients with primary hypothyroidism and attenuating hypothyroidism-induced oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.