<p style='text-indent:20px;'>In the following work, we consider the Boltzmann equation that models a diatomic gas by representing the microscopic internal energy by a continuous variable I. Under some convenient assumptions on the collision cross-section <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{B} $\end{document}</tex-math></inline-formula>, we prove that the linearized Boltzmann operator <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{L} $\end{document}</tex-math></inline-formula> of this model is a Fredholm operator. For this, we write <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{L} $\end{document}</tex-math></inline-formula> as a perturbation of the collision frequency multiplication operator, and we prove that the perturbation operator <inline-formula><tex-math id="M4">\begin{document}$ \mathcal{K} $\end{document}</tex-math></inline-formula> is compact. The result is established after inspecting the kernel form of <inline-formula><tex-math id="M5">\begin{document}$ \mathcal{K} $\end{document}</tex-math></inline-formula> and proving it to be <inline-formula><tex-math id="M6">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> integrable over its domain using elementary arguments.This implies that <inline-formula><tex-math id="M7">\begin{document}$ \mathcal{K} $\end{document}</tex-math></inline-formula> is a Hilbert-Schmidt operator.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.