Sustainable development of the built environment in developing countries is a major challenge in the 21st century. The use of local materials in construction of buildings is one of the potential ways to support sustainable development in both urban and rural areas. Building with Compressed Earthen Blocks (CEBs) is becoming more popular due to their low cost and relative abundance of materials. The proposed Green-Compressed Earth Block (GCEB) consists of ordinary CEB ingredients plus Banana fibers, which will be the focus of this study. Banana fibers are widely available worldwide as agricultural waste from Banana cultivation. Banana fibers are environmentally friendly and present important attributes, such as low density, light weight, low cost, high tensile strength, as well as being water and fire resistant. This kind of waste has a greater chance of being utilized for different application in construction and building materials. This focused on the use of banana fiber and its effect on the compressive and flexural strength in CEB. The deflection at the mid-span of the blocks studied was calculated using the Linear Variable Differential Transformer (LVDT). The results of this study will highlight general trends in the strength properties of different soil mixes for CEBs. These efforts are necessary to ensure that GCEB technology becomes more widely accepted in the world of building materials and is considered a reliable option for providing low-cost housing.
One of the challenges of the century is to reach compatibility between the required resistance and the usage of lightweight building materials that may negatively affect the mechanical properties. Natural fibers nowadays are used as enhancers in the industrial field. Hence, the fibers contribute by giving an ideal solution to improve mechanical proprieties of the structural elements such as tensile and impact strength. In previous studies, the use of natural fibers as reinforcement in construction materials has increased. Natural fibers have a lot of characteristics such as being strong, lightweight, inexpensive, and eco-friendly. This paper aims to investigate the performance of banana fiber bars (BFB) as reinforced material. Through this study, the development and characterization of natural fibers-based composite beams were observed. After the beams were designed, several types of finite element analysis were conducted using ‘ANSYS’ nonlinear finite element program under one-point loading. Results show good correlations between experimental and predicted results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.