Landing is one of the difficult challenges for an unmanned aerial vehicle (UAV). In this paper, we propose a vision-based landing approach for an autonomous UAV using reinforcement learning (RL). The autonomous UAV learns the landing skill from scratch by interacting with the environment. The reinforcement learning algorithm explored and extended in this study is Least-Squares Policy Iteration (LSPI) to gain a fast learning process and a smooth landing trajectory. The proposed approach has been tested with a simulated quadrocopter in an extended version of the USARSim (Unified System for Automation and Robot Simulation) environment. Results showed that LSPI learned the landing skill very quickly, requiring less than 142 trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.