We examined the determinants of the U.S. consumer sentiment by applying linear and nonlinear models. The data are monthly from 2009 to 2019, covering a large set of financial and nonfinancial variables related to the stock market, personal income, confidence, education, environment, sustainability, and innovation freedom. We show that more than 8.3% of the total of eigenvalues deviate from the Random Matrix Theory (RMT) and might contain pertinent information. Results from linear models show that variables related to the stock market, confidence, personal income, and unemployment explain the U.S. consumer sentiment. To capture nonlinearity, we applied the switching regime model and showed a switch towards a more positive sentiment regarding energy efficiency, unemployment rate, student loan, sustainability, and business confidence. We additionally applied the Gradient Descent Algorithm to compare the errors obtained in linear and nonlinear models, and the results imply a better model with a high predictive power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.