Abstract. Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries (KdV) equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudospectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.
We propose a new approach for moving frame construction that allows to make finite difference scheme invariant. This approach takes into account the order of accuracy and guarantees numerical properties of invariant schemes that overcome those of classical schemes. Benefits obtained with this process are illustrated with the Burgers equation.To cite this article: A. Chhay, A. Hamdouni, C. R. Mecanique 333 (2009).
RésuméUne construction nouvelle des schémas invariants utilisant les repères mobiles. On propose une procédure nouvelle de construction des repères mobiles permettant de rendre invariant les schémas de discrétisation en différences finies. Elle prend en compte l'ordre de consistance et garantit aux schémas invariants de meilleures performances que celles des schémas classiques. On illustre les performances de cette approche sur l'exemple de l'équation de Burgers. Pour citer cet article : M. Chhay, A. Hamdouni, C. R. Mecanique 333 (2009).
Version française abrégéeLes méthodes numériques construites afin de préserver certaines propriétés liéesà la structure géométrique deséquations s'appelle les intégrateurs géométriques. Elles permettent de traduire naturellement le comportement qualitatif des solutions ainsi que de réduire les instabilités numériques. En particulier, les Email addresses: nchhay01@univ-lr.fr (Marx Chhay), aziz.hamdouni@univ-lr.fr (Aziz Hamdouni).
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.