Background and Objectives: The metabolic syndrome is associated with alterations in renal function. An overly acidic urine has been described as a renal manifestation of the metabolic syndrome in patients with kidney stone disease. This study examined the association between the metabolic syndrome and urine pH in individuals without a history of nephrolithiasis.Design, Setting, Participants, & Measurements: A total of 148 adults who were free of kidney stones were evaluated in this outpatient cross-sectional study. Height, weight, BP, fasting blood, and 24-h urine chemistries were obtained. Urine pH was measured by pH electrode. The following features of the metabolic syndrome were evaluated: BP; body mass index; and serum triglyceride, glucose, and HDL cholesterol concentrations. The degree of insulin resistance was assessed by the homeostasis model assessment of insulin resistance.Results: Participants with the metabolic syndrome had a significantly lower 24-h urine pH compared with participants without the metabolic syndrome. Mean 24-h urine pH, adjusted for age, gender, creatinine clearance, and 24-h urine sulfate, decreased from 6.15, 6.10, 5.99, 5.85, to 5.69 with increasing number of metabolic syndrome abnormalities. An association was observed between 24-h urine pH and each metabolic feature. After adjustment for age, gender, creatinine clearance, urine sulfate, and body mass index, a significant inverse relationship was noted between 24-h urine pH and the degree of insulin resistance.Conclusions: An unduly acidic urine is a feature of the metabolic syndrome and is associated with the degree of insulin resistance.
Type 2 diabetes is a risk factor for nephrolithiasis in general and has been associated with uric acid stones in particular. The purpose of this study was to identify the metabolic features that place patients with type 2 diabetes at increased risk for uric acid nephrolithiasis. Three groups of individuals were recruited for this outpatient study: Patients who have type 2 diabetes and are not stone formers (n ؍ 24), patients who do not have diabetes and are uric acid stone formers (UASF; n ؍ 8), and normal volunteers (NV; n ؍ 59). Participants provided a fasting blood sample and a single 24-h urine collection for stone risk analysis. Twenty-four-hour urine volume and total uric acid did not differ among the three groups. Patients with type 2 diabetes and UASF had lower 24-h urine pH than NV. Urine pH inversely correlated with both body weight and 24-h urine sulfate in all groups. Urine pH remained significantly lower in patients with type 2 diabetes and UASF than NV after adjustment for weight and urine sulfate (P < 0.01). For a given urine sulfate, urine net acid excretion tended to be higher in patients with type 2 diabetes versus NV. With increasing urine sulfate, NV and patients with type 2 diabetes had a similar rise in urine ammonium, whereas in UASF, ammonium excretion remained unchanged. The main risk factor for uric acid nephrolithiasis in patients with type 2 diabetes is a low urine pH. Higher body mass and increased acid intake can contribute to but cannot entirely account for the lower urine pH in patients with type 2 diabetes.
Background and objectives: Type 2 diabetes is associated with excessively low urine pH, which increases the risk for uric acid nephrolithiasis. This study was conducted to assess the metabolic basis responsible for the excessive urinary acidity of individuals with type 2 diabetes.Design, setting, participants, & measurements: Nine non-stone-forming patients who had type 2 diabetes and low urine pH and 16 age-and body mass index-matched non-stone-forming volunteers without type 2 diabetes were maintained on a constant metabolic diet for 7 days, and 24-hour urine was collected on the last 2 days of the diet.Results: Urine dietary markers (potassium, sulfate, phosphorus, and urea nitrogen) were not different between the two groups. Patients with type 2 diabetes exhibited a significantly lower 24-hour urine pH (5.45 ؎ 0.27 versus 5.90 ؎ 0.42; P < 0.01) and higher net acid excretion (NAE; 57 ؎ 12 versus 38 ؎ 18 mEq/d; P < 0.01) compared with control subjects. The proportion of NAE excreted as ammonium (NH 4 ؉ /NAE) was significantly lower in patients with type 2 diabetes than in control subjects
The recognition of metabolic, molecular, and genetic factors that influence urinary pH, and uric acid metabolism and excretion, will provide novel insights into the pathogenesis of uric acid stones, and open the way for new therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.