Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.
Nucleoside reverse transcriptase inhibitors (NRTIs) require intracellular phosphorylation to active triphosphate (TP) nucleotide metabolites before they can inhibit the HIV reverse transcriptase. However, monitoring these pharmacologically active TP metabolites is challenging due to their instability and their low concentrations at the pg/ml levels in blood and tissues. The combination of lamivudine (3TC) and abacavir (ABC) is one of the first lines for HIV therapy. Therefore, a sensitive, selective, accurate, and precise LC-MS/MS method was developed and validated for the simultaneous quantification of 3TC- and ABC-TP metabolites in mouse blood and tissues. Calibration curves were linear over the range of 10-100,000 pg/ml for 3TC-TP and 4-40,000 pg/ml for carbovir-TP (CBV-TP; phosphorylated metabolite of ABC). This corresponds to 2.1-21,322 fmol/10 cells for 3TC-TP and 0.8-8000 fmol/10 cells for CBV-TP. Accuracy and precision were less than 15% for all quality control sample (QCs), and absolute extraction recovery of were >65% for 3TC-TP and >90% for CBV-TP. The method was optimized to ensure stability of TP samples and standards during sample collection, preparation, analysis, and storage conditions. This method has enhanced sensitivity and requires smaller amounts of blood and tissue samples compared to previous LC-MS/MS methods for 3TC- and CBV-TP quantification. The developed method was successfully applied to characterize the pharmacokinetic profile of TP metabolites in mouse peripheral blood mononuclear cells (PBMCs), spleen, lymph nodes, and liver cells. In addition, another direct, simple, and high-throughput method for the quantification of TP standards was developed and used for the analysis of stability samples.
This is a retrospective cohort study evaluating the safety and effectiveness of biodegradable calcium sulfate antibiotic beads in vascular graft infections compared with standard of care. No differences in acute kidney injury or hypercalcemia were observed between the cohorts. Recurrence of infection did not occur in the 13-patient bead cohort compared with 14 patients who had recurrence in the 45-patient nonbead cohort with a number needed to treat of 4.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.