The dynamic basis for T-cell depletion in late-stage HIV-1 disease remains controversial. Using a new, non-radioactive, endogenous labeling technique, we report direct measurements of circulating T-cell kinetics in normal and in HIV-1-infected humans. In healthy, HIV-1-seronegative subjects, CD4+ and CD8+ T cells had half-lives of 87 days and 77 days, respectively, with absolute production rates of 10 CD4+ T cells/microl per day and 6 CD8+ T cells/microl per day. In untreated HIV-1-infected subjects (with a mean CD4 level of 342 cells/microl), the half-life of each subpopulation was less than 1/3 as long as those of healthy, HIV-1-seronegative subjects but was not compensated by an increased absolute production rate of CD4+ T cells. After viral replication was suppressed by highly active antiretroviral therapy for 12 weeks, the production rates of circulating CD4+ and CD8+ T cells were considerably elevated; the kinetic basis of increased CD4 levels was greater production, not a longer half-life, of circulating cells. These direct measurements indicate that CD4+ T-cell lymphopenia is due to both a shortened survival time and a failure to increase the production of circulating CD4+ T cells. Our results focus attention on T-cell production systems in the pathogenesis of HIV-1 disease and the response to antiretroviral therapy.
We have developed a novel cotransplantation system in which gene- transduced human CD34+ progenitor cells are transplanted into immunodeficient (bnx) mice together with primary human bone marrow (BM) stromal cells engineered to produce human interleukin-3 (IL-3). The IL- 3-secreting stroma produced sustained circulating levels of human IL-3 for at least 4 months in the mice. The IL-3-secreting stroma, but not control stroma, supported human hematopoiesis from the cotransplanted human BM CD34+ progenitors for up to 9 months, such that an average of 6% of the hematopoietic cells removed from the mice were of human origin (human CD45+). Human multilineage progenitors were readily detected as colony-forming units from the mouse marrow over this time period. Retroviral-mediated transfer of the neomycin phosphotransferase gene or a human glucocerebrosidase cDNA into the human CD34+ progenitor cells was performed in vitro before cotransplantation. Human multilineage progenitors were recovered from the marrow of the mice 4 to 9 months later and were shown to contain the transduced genes. Mature human blood cells marked by vector DNA circulated in the murine peripheral blood throughout this time period. This xenograft system will be useful in the study of gene transduction of human hematopoietic stem cells, by tracing the development of individually marked BM stem cells into mature blood cells of different lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.