The multifaceted polycomb group gene Yin-Yang1 (Yy1) has been implicated in a variety of transcriptional regulatory roles both as an activator and silencer of gene expression. Here we examine the role of Yy1 during oocyte growth by conditional deletion of the locus in the growing oocyte. Our results indicate that YY1 is required for oocyte maturation and granulosa cell expansion. In mutant oocytes, we observe severely reduced expression of both Gdf9 and Bmp15, suggesting a mechanism underlying the failure of granulosa cell expansion. Consequently, we observe infertility, failure of estrus cycling, and altered reproductive hormone levels in mutant females. Additionally, we find that YY1-deficient oocytes exhibit altered levels of several oocyte-specific factors, including Pou5f1, Figla, Lhx8, Oosp1, and Sohlh2. These results document YY1's involvement in folliculogenesis and ovarian function in the mouse and indicate that YY1 is required specifically in the oocyte for oocyte-granulosa cell communication.
The ubiquitously expressed Polycomb Group protein Yin-Yang1 (YY1) is believed to regulate gene expression through direct binding to DNA elements found in promoters or enhancers of target loci. Additionally, YY1 contains diverse domains that enable a plethora of protein–protein interactions, including association with the Oct4/Sox2 pluripotency complex and Polycomb Group silencing complexes. To elucidate the in vivo role of YY1 during gastrulation, we generated embryos with an epiblast specific deletion of Yy1. Yy1 conditional knockout (cKO) embryos initiate gastrulation, but both primitive streak formation and ingression through the streak is severely impaired. These streak descendants fail to repress E-Cadherin and are unable to undergo an appropriate epithelial to mesenchymal transition (EMT). Intriguingly, overexpression of Nodal and concomitant reduction of Lefty2 are observed in Yy1 cKO embryos, suggesting that YY1 is normally required for proper Nodal regulation during gastrulation. Furthermore, definitive endoderm is specified but fails to properly integrate into the outer layer. Although anterior neuroectoderm is specified, mesoderm production is severely restricted. We show that YY1 directly binds to the Lefty2 locus in E7.5 embryos and that pharmacological inhibition of Nodal signaling partially restores mesoderm production in Yy1 cKO mutant embryos. Our results reveal critical requirements for YY1 during several important developmental processes, including EMT and regulation of Nodal signaling. These results are the first to elucidate the diverse role of YY1 during gastrulation in vivo.
Epigenetic regulation of gene expression has become relevant to nearly all areas of biomedical research. The emergence of technologies that allow for examination of the epigenome combined with identification of key protein complexes that mediate the myriad chromatin modifications that occur have greatly enhanced the versatility and efficacy of tools with which to study normal development and disease states. The evolutionarily conserved polycomb group genes (PcG) have been identified as a predominant mechanism by which gene silencing occurs during development, differentiation, and disease. While molecular events that target PcG complexes have been well defined in some non-vertebrate models, the details of locus specificity and functional diversity of mammalian PcG proteins have not yet unresolved. Here we discuss recent findings that offer novel mechanistic events and add complexity to our understanding of PcG function in vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.