KRASG12C has emerged as a promising target
in the treatment
of solid tumors. Covalent inhibitors targeting the mutant cysteine-12
residue have been shown to disrupt signaling by this long-“undruggable”
target; however clinically viable inhibitors have yet to be identified.
Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99)
we identified in KRASG12C to identify inhibitors suitable
for clinical development. Structure-based design efforts leading to
the identification of a novel quinazolinone scaffold are described,
along with optimization efforts that overcame a configurational stability
issue arising from restricted rotation about an axially chiral biaryl
bond. Biopharmaceutical optimization of the resulting leads culminated
in the identification of AMG 510, a highly potent, selective, and
well-tolerated KRASG12C inhibitor currently in phase I
clinical trials (NCT03600883).
We describe here the first synthesis of N-phosphoryl ynamides featuring C- and P-chirality via copper(I)-catalyzed amidative cross-couplings between phosphoramidates and phosphordiamidates with alkynyl bromides. Also featured is a tandem aza-Claisen–hetero-[2+2] cycloaddition for the synthesis of N-phosphoryl azetidin-2-imines.
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.
Epipolythiodioxopiperazine (ETP) alkaloids are structurally elaborate alkaloids that show potent antitumor activity. However, their high toxicity and demonstrated interactions with various biological receptors compromises their therapeutic potential. In an effort to mitigate these disadvantages, a short stereocontrolled construction of tricyclic analogues of epidithiodioxopiperazine alkaloids was developed. Evaluation of a small library of such structures against two invasive cancer cell lines defined initial structure-activity relationships (SAR), which identified 1,4-dioxohexahydro-6H-3,8a-epidithiopyrrolo[1,2-a]pyrazine 3c and related structures as particularly promising antitumor agents. ETP alkaloid analogue 3c exhibits low nanomolar activity against both solid and blood tumors in vitro. In addition, 3c significantly suppresses tumor growth in mouse xenograft models of melanoma and lung cancer, without obvious signs of toxicity, following either intraperitoneal (IP) or oral administration. The short synthesis of molecules in this series will enable future mechanistic and translational studies of these structurally novel and highly promising clinical antitumor candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.