The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems.Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios.The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.
Although T-independent immunity is known to be generated against bacterial capsular and cell wall polysaccharides expressed by a number of bacterial pathogens, it has not been studied in depth during intracellular bacterial infections. Our previous study demonstrated that Ehrlichia muris, an obligate intracellular tick-borne pathogen, generates protective classical TI responses in CD4 T cell-deficient C57BL/6 mice. We found that E. muris T-independent immunity is accompanied by the expansion of a very large extrafollicular spleen population of CD11clow-expressing plasmablasts that exhibit characteristics of both B-1 and marginal zone B cells. The plasmablasts comprised up to 15% of the total spleen lymphocytes and ∼70% of total spleen IgMhighIgDlow cells during peak infection in both wild-type and MHC class II-deficient mice. The CD11clow cells exhibited low surface expression of B220, CD19, and CD1d, high expression of CD11b, CD43, but did not express CD5. Approximately 50% of the CD11clow cells also expressed CD138. In addition to CD11b and CD11c, the plasmablasts expressed the β1 (CD29) and α4 (CD49d) integrins, as well as the chemokine receptor CXCR4, molecules which may play roles in localizing the B cells extrafollicular region of the spleen. During peak infection, the CD11clow cells accounted for the majority of the IgM-producing splenic B cells and nearly all of the E. muris outer membrane protein-specific IgM-secreting cells. Thus, during this intracellular bacterial infection, CD11c expression identifies a population of Ag-specific spleen plasmablasts responsible for T-independent Ab production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.