The broad-spectrum MMP inhibitor CGS 27023A was tested to determine its potential as a therapy for atherosclerosis, aneurysm, and restenosis. LDL receptor-deficient (LDLr -/-) mice fed a high-fat, cholic acid-enriched diet for 16 weeks developed advanced aortic atherosclerosis with destruction of elastic lamina and ectasia in the media underlying complex plaques. Lesion formation correlated with a 4.6- to 21.7-fold increase in MMP-3, -12, and -13 expression. Treatment with CGS 27023A (p.o., b.i.d. at 50 mg/kg) had no effect on the extent of aortic atherosclerosis (36 +/- 4% versus 30 +/- 2% in controls), but both aortic medial elastin destruction and ectasia grade were significantly reduced (38% and 36%, respectively, p < 0.05). In the rat ballooned-carotid-artery model, CGS 27023A (12.5 mg/kg/day via osmotic minipump) reduced smooth muscle cell migration at 4 days by 83% (p < 0.001). Intimal lesions were reduced by 85% at 7 days (p < 0.001), but intimal smooth muscle proliferation was unaffected, and inhibitory efficacy was lost with time. At 12 days, intimal lesion reduction was less potent (52%, p < 0.01). At 3 and 6 weeks, reductions of 11% and 4%, respectively, were not significant. This demonstrates that it is essential to include late time points when the ballooned-carotid-artery model is employed to ensure that lesion size does not "catch up" when a compound solely inhibits smooth muscle cell migration. In summary, MMP inhibitor therapy delayed but did not prevent intimal lesions, thereby demonstrating little promise to prevent restenosis. In contrast, MMP inhibitor therapy may prove useful to retard progression of aneurysm.
Potent and selective non-peptidic inhibitors of human endothelin-converting enzyme-1 (ECE-1) have been designed as potential modulators of endothelin (ET-1) production in vivo. Because of its unique structural characteristics and long duration of action in vivo, the dual ECE-1 and neutral endopeptidase 24.11 (NEP) inhibitor, CGS 26303, was selected as an attractive lead for further optimization of potency and selectivity. Replacement of the P(1)' biphenyl substituent of CGS 26303 by a conformationally restricted 3-dibenzofuranyl group led to more potent and more selective ECE-1 inhibitors, such as the tetrazole 27. The remarkable effect of this P(1)' modification allowed for the first time phosphonomethylcarboxylic acids, such as 29, to display both potent (IC(50) = 22 nM) and selective (104-fold vs NEP) ECE-1 inhibition. Chemoenzymatic syntheses of the new alpha-amino acid (S)-3-dibenzofuran-3-ylalanine intermediate were developed, and improved procedures to generate substituted alpha-aminoalkylphosphonic acids were devised to support the production of various analogues. Although additional gains in intrinsic ECE-1 inhibitory potency could occasionally be achieved by addition of a P(1) side chain, these compounds (e.g. 43a) showed poor functional activity in vivo in the big ET-1 pressor test. Phosphonoalkyl dipeptides featuring 3-dibenzofuranyl groups in both the P(1)' and P(2)' positions were also very potent ECE-1 inhibitors, albeit lacking the desired selectivity against NEP. Functionally, 27and 29 were the two most efficacious compounds from this study, producing sustained inhibition of ECE-1 activity in rats, as measured by their ability to block the hypertensive effects induced by big ET-1. This profile was similar to that of a potent ET(A)/ET(B) dual receptor antagonist, SB 209670. Due to their favorable in vitro and in vivo profiles, 27 (CGS 34043) and 29 (CGS 35066) constitute new pharmacological tools useful in assessing the role of ECE-1 in pathological conditions.
Endothelin-1 is the most potent peptidic vasoconstrictor discovered to date. The final step of posttranslational processing of this peptide is the conversion of its precursor by endothelin-converting enzyme-1 (ECE-1), a metalloprotease which displays high amino acid sequence identity with neutral endopeptidase 24.11 (NEP) especially at the catalytic center. A series of potent and selective arylacetylene-containing ECE-1 inhibitors have been prepared. (S, S)-3-Cyclohexyl-2-[[5-(2, 4-difluorophenyl)-2-[(phosphonomethyl)amino]pent-4-ynoyl]amino] propio nic acid (47), an arylacetylene amino phosphonate dipeptide, was found to inhibit ECE-1 and NEP with IC50 values of 14 nM and 2 microM, respectively. Similarly, (S)-[[1-[(2-biphenyl-4-ylethyl)carbamoyl]-4-(2-fluorophenyl)but-3- yny l]amino]methyl]phosphonic acid (56), an arylacetylene amino phosphonate amide, had IC50's of 33 nM and 6.5 microM for ECE-1 and NEP, respectively. Slight modification of the aryl moiety was found to have dramatic effects on ECE-1/NEP selectivity. The 2-fluoro dipeptide analogue, (S, S)-2-[[5-(2-fluorophenyl)-2-[(phosphonomethyl)amino]pent-4-ynoyl]+ ++amin o]-4-methylpentanoic acid (40), showed a 72-fold selectivity for ECE-1 over NEP, while the 3-fluoro dipeptide analogue, (S, S)-2-[[5-(3-fluorophenyl)-2-[(phosphonomethyl)amino]pent-4-ynoyl]+ ++amin o]-4-methylpentanoic acid (22), was equipotent for ECE-1 and NEP. Several of these inhibitors were shown to be potent in blocking ET-1 production in vivo as demonstrated by the big ET-1-induced pressor response in rats. These potent inhibitors are the most selective for ECE-1 reported to date and are envisaged to have a variety of therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.