Recent studies have described muscle synergies as overlapping, multimuscle groups defined by synchronous covariation in activation intensity. A different approach regards a synergy as a fixed temporal sequence of bursts of activity across groups of motoneurons. To pursue this latter definition, the present study used a principal component (PC) analysis tailored to reveal the across-muscle temporal synergies of human hand movement. Electromyographic (EMG) activity was recorded as subjects used a manual alphabet to spell a list of words. The analysis was applied to the EMG waveforms from 27 letter-to-letter transitions of equal duration. The first PC (of 27) represented the main temporal synergy; after practice, it began to account for more of the EMG variance (up to 40%). This main synergy began with a burst in the 4-finger extensor and a silent period in the flexors. There were then progressively later and shorter bursts in the thumb abductor, thumb flexor, little finger abductor, and finally the finger flexors. The results suggest that hand movements may be generated by activity waves unfolding in time. Because finger muscles are under relatively direct cortical control, this suggests a specific form of cortical pattern generation.
. Complex movements are generally thought to consist of a series of simpler elements. If this is so, how does the sensorimotor system assemble the pieces? This study recorded and evaluated sequences of arm movements to various targets placed in three-dimensional (3D) space. Subjects performed sequences consisting of single, double, or triple segments with the same first target but with different second targets. The data analysis focused on the first movement segment and evaluated hand path curvature, the hand's final approach to the first target, and the whole arm postures at the beginning and end. Although some idiosyncratic differences in approach were observed, only the final arm posture depended, in a consistent way, on which particular movement was to follow as the second segment. This provided evidence for "coarticulation" of the two segments, only at the level of arm posture, and simulations revealed that this anticipatory modification improved the energetic efficiency of the second segment. Data from movements through five consecutive triple segments (i.e., 5 triangles) were assessed to determine whether kinematic constraints, such as Donders' law, apply to repetitive drawing movements. Although such constraints could prevent the accumulation of changes in arm posture, this was not observed. Instead, in most cases, the elbow was a little bit higher at the end of each triangle than at the beginning. Taken together, the results suggest that coarticulation may facilitate the joining of two segments and the efficiency of the second movement, but does not extend over the drawing of several segments.
Abstract. The present study focuses on two trajectoryformation models of point-to-point aiming movements, viz., the minimum-jerk and the minimum torque-change model. To date, few studies on minimum-jerk and minimum torque-change trajectories have incorporated self-or externally imposed end-point constraints, such as the direction and velocity with which a target area is approached. To investigate which model accounts best for the eects on movement trajectories of such ± in many circumstances ± realistic end-point constraints, we adjusted both the minimum-jerk and the minimum torque-change model so that they could generate trajectories of which the ®nal part has a speci®c direction and speed. The adjusted models yield realistic trajectories with a high curvature near movement completion.Comparison of simulated and measured movement trajectories show that pointing movements that are constrained with respect to ®nal movement direction and speed can be described in terms of minimization of joint-torque changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.