While parathyroid hormone-related protein (PTHrP) has been characterized as an important negative regulator of chondrocyte maturation in the growth plate, the autocrine or paracrine factors that stimulate chondrocyte maturation are not well characterized. Cephalic sternal chondrocytes were isolated from 13-day embryos, and the role of bone morphogenetic protein-6 (BMP-6) as a positive regulator of chondrocyte maturation was examined in monolayer cultures. Progressive maturation, which was accelerated in the presence of ascorbate, occurred in the cultures. During maturation, the cultures expressed high levels of BMP-6 mRNA which preceded the induction of type X collagen mRNA. Treatment of the cultures with PTHrP (10 −7 M) at the time of plating completely abolished BMP-6 and type X collagen mRNA expression. Removal of PTHrP after 6 days was followed by the rapid (within 24 h) expression of BMP-6 and type X collagen mRNA, with BMP-6 again preceding type X collagen expression. The addition of exogenous BMP-6 (100 ng/ml) to the cultures accelerated the maturation process both in the presence and absence of ascorbate and resulted in the highest levels of type X collagen. When exogenous BMP-6 was added to PTHrP containing cultures, maturation occurred with the expression of high levels of type X collagen, despite the presence of PTHrP in the cultures. Furthermore, BMP-6 did not stimulate expression of its own mRNA in the PTHrP treated cultures, but it did stimulate the expression of Indian hedgehog (Ihh) mRNA. These latter findings suggest that while PTHrP directly inhibits BMP-6, it indirectly regulates Ihh expression through BMP-6. Other phenotypic changes associated with chondrocyte differentiation were also stimulated by BMP-6, including increased alkaline phosphatase activity and decreased proliferation. The results suggest that BMP-6 is an autocrine factor that initiates chondrocyte maturation and that PTHrP may prevent maturation by inhibiting the expression of BMP-6. (J Bone Miner Res 1999;14:475-482)
Mutant BMP receptors were transfected into cultured embryonic upper sternal chrondrocytes using retroviral vectors to determine if BMP signaling is required for chondrocyte maturation and the expression of a key regulatory molecule, Indian hedgehog (Ihh). Chondrocytes infected with replication competent avian retroviruses (RCAS) viruses carrying constitutive active (CA) BMPR-IA and BMPR-IS had enhanced expression of type X collagen and Ihh mRNA. Addition of PTHrP, a known inhibitor of chondrocyte maturation, abolished the expression of type X collagen, BMP-6, and Ihh mRNAs in control cells. In contrast, PTHrP treated cultures infected with of CA BMPR-IA or CA BMPR-IB had low levels of BMP-6 and type X collagen, but high levels of Ihh expression. Although dominant negative (DN) BMPR-IA had no effect, DN BMPR-IB inhibited the expression of type X collagen and BMP-6, and decreased alkaline phosphatase activity, even in the presence of exogenously added BMP-2 and BMP-6. DN BMPR-IB also completely blocked Ihh expression. Overall, the effect of DN BMPR-IB mimicked the effects of PTHrP. To determine if there is an autocrine role for the BMPs in chondrocyte maturation, the cultures were treated with noggin and follistatin, molecules that bind BMP-3-4 and BMP-61-7, respectively. While noggin and follistatin inhibited the effects of recombinant BMP-2 and BMP-6, respectively, they had only minimal effects on the spontaneous maturation of chondrocytes in culture, suggesting that more than one subgroup of BMPs regulates chondrocyte maturation. The results demonstrate that: (i) BMP signaling stimulates chondrocyte maturation; (ii) BMP signaling increases Ihh expression independent of maturational effects; and (iii) BMP signaling can partially overcome the inhibitory effects of PTHrP on maturation.
To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Cal-pains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitorrelated and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan ® Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/ lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.