Background Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. Current treatment options at diagnosis are multimodal and include surgical resection, radiation, and chemotherapy. Significant advances in the understanding of the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies for recurrent and newly diagnosed disease. Innovative treatments, such as tumor-treating fields (TTFields) and immunotherapy, give hope for enhanced survival. Objectives This article reviews the background, risks, common complications, and treatment options for GBM. Methods A brief review of GBM, treatment options, and a look at new therapies that have been approved for new and recurrent disease are included in this article. Findings Despite aggressive resection and combined modality adjuvant treatment, most GBMs recur. Treatments, such as TTFields, drugs to target molecular receptors, and immunotherapy, are promising new options.
Background: Diesel exhaust has been considered to be a probable lung carcinogen based on studies of occupationally exposed workers. Efforts to define lung cancer risk in these studies have been limited in part by lack of quantitative exposure estimates.Objective: We conducted a retrospective cohort study to assess lung cancer mortality risk among U.S. trucking industry workers. Elemental carbon (EC) was used as a surrogate of exposure to engine exhaust from diesel vehicles, traffic, and loading dock operations.Methods: Work records were available for 31,135 male workers employed in the unionized U.S. trucking industry in 1985. A statistical model based on a national exposure assessment was used to estimate historical work-related exposures to EC. Lung cancer mortality was ascertained through the year 2000, and associations with cumulative and average EC were estimated using proportional hazards models.Results: Duration of employment was inversely associated with lung cancer risk consistent with a healthy worker survivor effect and a cohort composed of prevalent hires. After adjusting for employment duration, we noted a suggestion of a linear exposure–response relationship. For each 1,000-µg/m3 months of cumulative EC, based on a 5-year exposure lag, the hazard ratio (HR) was 1.07 [95% confidence interval (CI): 0.99, 1.15] with a similar association for a 10-year exposure lag [HR = 1.09 (95% CI: 0.99, 1.20)]. Average exposure was not associated with relative risk.Conclusions: Lung cancer mortality in trucking industry workers increased in association with cumulative exposure to EC after adjusting for negative confounding by employment duration.
BackgroundAn elevated risk of lung cancer in truck drivers has been attributed to diesel exhaust exposure. Interpretation of these studies specifically implicating diesel exhaust as a carcinogen has been limited because of limited exposure measurements and lack of work records relating job title to exposure-related job duties.ObjectivesWe established a large retrospective cohort of trucking company workers to assess the association of lung cancer mortality and measures of vehicle exhaust exposure.MethodsWork records were obtained for 31,135 male workers employed in the unionized U.S. trucking industry in 1985. We assessed lung cancer mortality through 2000 using the National Death Index, and we used an industrial hygiene review and current exposure measurements to identify jobs associated with current and historical use of diesel-, gas-, and propane-powered vehicles. We indirectly adjusted for cigarette smoking based on an industry survey.ResultsAdjusting for age and a healthy-worker survivor effect, lung cancer hazard ratios were elevated in workers with jobs associated with regular exposure to vehicle exhaust. Mortality risk increased linearly with years of employment and was similar across job categories despite different current and historical patterns of exhaust-related particulate matter from diesel trucks, city and highway traffic, and loading dock operations. Smoking behavior did not explain variations in lung cancer risk.ConclusionsTrucking industry workers who have had regular exposure to vehicle exhaust from diesel and other types of vehicles on highways, city streets, and loading docks have an elevated risk of lung cancer with increasing years of work.
In this pooled analysis, a trend was found for higher incidence of percutaneous driveline infections in patients treated with the HMII; a higher incidence of stroke and time-related cumulative risk of any infection and stroke was found in patients treated with the HVAD, which was independently associated with higher stroke risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.