Summary
The estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Furthermore, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.
Crosstalk between estrogen (ER) and glucocorticoid (GR) receptors has been shown to contribute to the development and progression of breast cancer. Importantly, the ER and GR status in breast cancer cells is a significant factor in determining the outcome of the disease. However, mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon co-activation, and characterized status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements, or indirectly through interactions with other factors. The unveiling of this mechanism is important for understanding cellular interactions between ER and GR, and may represent a general mechanism for crosstalk between nuclear receptors in human disease.
Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ±50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings.
Pteridine nucleoside analog probes are highly fluorescent and offer different approaches to monitor subtle DNA interactions with other molecules. Similarities in structure and size to native nucleosides make it possible to incorporate these probes into oligonucleotides through the standard deoxyribose linkage. These probes are formulated as phosphoramidites and incorporated into oligonucleotides using automated DNA synthesis. Their position within the oligonucleotide renders them exquisitely sensitive to changes in structure as the oligonucleotide meets and reacts with other molecules. Changes are measured through fluorescence intensity, anisotropy, lifetimes, spectral shifts, and energy transfer. The fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into single and double stranded oligonucleotides are reviewed. The two guanosine analogs, 3MI and 6MI, and two adenosine analogs, 6MAP and DMAP, are reviewed in detail along with applications utilizing them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.