Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics).
For quantitative analysis of DCE-MRI data, the time course of the concentration of the contrast agent in the blood plasma, or vascular input function (VIF), is required. We compared pharmacokinetic parameters derived using individual and population-based VIFs in mice for two different contrast agents, Gd-DTPA and P846. Eleven mice with subcutaneous 4T1 breast cancer xenografts were imaged at 7T. A pre-contrast T1 map was acquired along with dynamic T1-weighted gradient echo images before, during, and after a bolus injection of contrast agent delivered via a syringe pump. Each animal's individual VIF (VIFind) and derived population-averaged VIF (VIFpop) were used to extract parameters from the signal-time curves of tumor tissue at both the region of interest (ROI) and voxel level. The results indicate that for both contrast agents, Ktrans values estimated using VIFpop have a high correlation (CCC > 0.85) with Ktrans values estimated using VIFind on both an ROI and voxel level. This work supports the validity of using of a population-based VIF with a stringent injection protocol in pre-clinical DCE-MRI studies.
Accurate quantification of pharmacokinetic parameters in dynamic contrast-enhanced (DCE) MRI may be affected by the passive diffusion of contrast agent (CA) within the tissue. By introducing an additional term into the standard Tofts-Kety (STK) model, we correct for the effects of CA diffusion. We first develop the theory describing a CA diffusion corrected STK model (DTK). The model is then tested in simulation with simple models of diffusion. The DTK model is also fit to 18 in vivo DCE-MRI acquisitions from murine models of cancer and results are compared to those from the STK model. The DTK model returned estimates with significantly lower error than the STK model (p≪0.001). In poorly-perfused (i.e., Ktrans≤0.05 min−1) regions the STK model returned unphysical ve values, while the DTK model estimated ve with less than 7% error in noise-free simulations. Results in vivo data revealed similar trends. For voxels with low Ktrans values and late peak concentration times the STK model returned ve estimates >1.0 in 40% of the voxels as compared to only 16% for the DTK model. The DTK model presented here shows promise in estimating accurate kinetic parameters in the presence of passive contrast agent diffusion.
Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp, and ve as estimated by AIFind and AIFpop are 0.65, 0.74, and 0.31, respectively, based on region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84, and 0.68 for Ktrans, vp, and ve, respectively. This work indicates that Ktrans and vp show a good agreement between AIFpop and AIFind while there is a weak agreement on ve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.