Eutrophication is a widespread phenomenon that disrupts natural ecosystems around the globe. Despite the general recognition that ecosystems provide many services and benefits to humans, little effort has been made to address how increasing anthropogenic eutrophication affects those services. We conducted a field experiment to determine the effect of nutrient enrichment on five ecological services provided by a model coastal system, a shallow seagrass community near Mobile Bay, Alabama (USA): (1) the provision of shelter for fauna; (2) the quality of food provided to first‐order consumers; (3) quantity of food provision to first‐order consumers and O2/CO2 exchange; (4) producer carbon and nitrogen storage, and (5) water clarity. The results showed a severe negative impact on seagrass density and biomass, which greatly reduced the structural complexity of the community and provision of shelter to fauna. Water clarity and the standing stock of producer carbon were reduced in the fertilized area in comparison with the control area. In contrast, nutrient addition did not affect in any consistent way the total quantity of food available for first‐order consumers, the net exchange of O2/CO2, or the standing stock of producer nitrogen in the community. The nutritional quality of the food available for first‐order consumers increased with fertilization. These results show that the impacts of nutrient enrichment on the services provided by natural systems may be disparate, ranging from negative to positive. These findings suggest that management policies for anthropogenic eutrophication will depend on the specific ecosystem service targeted. In the case of shallow seagrass beds, the loss of biogenic habitat and drastic impacts on commercially important fauna may be sufficiently alarming to warrant rigorous control of coastal eutrophication.
The ability of oysters to remove large quantities of particulates from the water column, thereby potentially improving water quality, has been cited as one of the reasons for oyster reef restoration. However, this ability has not yet been effectively demonstrated in the field. As part of the Alabama Oyster Reef Restoration Project, this study was designed to assess impacts of restored eastern oyster (Crassostrea virginica) reefs on primary production, nutrient dynamics, and water quality in shallow tidal creeks. Using a Before-After-Control-Impact (BACI) design, we monitored tidal creeks around Dauphin Island, AL, for changes induced by the introduction of oyster reefs. Reef placement resulted in increased ammonium (NH 4 + ) in two of the three experimental creeks. Interestingly, oyster reefs did not seem to reduce water column particulates or have an impact on phytoplankton or microphytobenthic biomass or productivity. We do not believe that our data discount the importance and/or usefulness of oysters in modifying the water column. Rather, we acknowledge that it is difficult to detect these impacts/environmental services in this type of system (i.e., a tidal creek system), because they seem to be very localized and short-lived (i.e., not ecologically relevant on a creek-wide scale). This study highlights the need to consider location and habitat in planning oyster restoration projects. Also, it demonstrates that the types, magnitudes, and spatial extent of changes in ecosystem services that should be expected after reef restoration might need to be re-evaluated.
Past research has examined hurricane impacts on marine communities such as seagrass beds, coral reefs, and mangroves, but studies on how hurricanes affect marsh tidal creeks are lacking despite the important ecological roles that marsh tidal creeks have in coastal ecosystems. Here we report on the impact of Hurricane Ivan, which made landfall on September 16, 2004, on the primary productivity and metabolism of six marsh tidal creeks in the NorthCentral Gulf of Mexico. The hurricane did not seem to have any large, lasting impact on nutrient concentrations, primary productivity, metabolism, and chlorophyll a concentration in the watercolumn of the marsh tidal creeks. In contrast, the hurricane seemed to largely decrease gross primary productivity, net productivity, and chlorophyll a concentration in the sediment of the marsh tidal creeks. The results observed for Hurricane Ivan were coincident with those observed for four other major storms that made landfall close to the study area during 2005, Tropical Storm Arlene and Hurricanes Cindy, Dennis, and Katrina. However, the apparent negative impact of major storms on the sediment of the marsh tidal creeks did not seem to be long-lived and appeared to be dissipated within a few weeks or months after landfall. This suggests that marsh tidal creeks mostly covered with bare sediment are less disturbed by hurricanes than other types of marine communities populated with bottom-attached and/or more rigid organisms, such as seagrass meadows, coral reefs, and mangroves, where hurricane impacts can be larger and last longer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.