It is widely accepted that the fossil record shows both the evolution of more powerful durophagous marine predators through time and, in response, major shifts in life mode and morphology for many prey taxa. Few fossil studies, however, have successfully identified particular predator species with respect to causing evolutionary change in particular prey species. We present evidence that the evolutionary appearance in the western Atlantic of the stone crab, Menippe mercenaria, an extraordinarily powerful durophagous predator, contributed to the appearance of sinistrality, which is very rare, in two genera of marine gastropods (Conus and Sinistrofulgur) during the Pliocene. Based on this conclusion, we suggest that modern fishing pressure on stone crabs may lead to evolutionary changes in their present day prey.
The scope of anti‐predatory adaptation is expected to be greater in warm than in cold environments. High temperatures lower the costs associated with the production and maintenance of energetically expensive traits and enable ecological interactions to intensify. We tested this hypothesis by characterizing the expression of anti‐predatory morphology within a marine gastropod species (the knobbed whelk Busycon carica) over a large (> 1400 km) geographic area that spans more than 10°C annual temperature variation. We also conducted experimental predation studies with a powerful durophagous predator, the stone crab Menippe, to verify the anti‐predatory advantages of a heavily ornamented shell morphology (e.g. increased thickness, pronounced spines), and we used repair scar data to assess clinal variation in selective pressure from predators. We predicted that repair scar rates would be greatest in warm southernmost latitudes, and that expression of energetically costly anti‐predatory morphology would peak in concert with elevated predation pressures.
Experiments confirmed that whelks with energetically costly, heavily ornamented shells had higher survivorship rates than those with weakly ornamented shells. As predicted, we also found that the expression of anti‐predatory traits was greatest in the southern part of B. carica's range. After standardizing shells for size, shape, and exposure time to enemies, repair scar rates also peaked to the south. Taken together, these results suggest that the expression of anti‐predatory traits along the geographic cline is governed by the interaction of two selective factors: temperature and predation, with the former acting as the ultimate control on the scope of adaptation both by escalating predation pressure in the southern part of B. carica's range and by physically limiting (to the north) and facilitating (to the south) the production of anti‐predatory traits. Feedbacks between temperature and predation thus causally interact to enable and drive, respectively, the observed geographic cline in energy‐intensive anti‐predatory shell traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.