Alagille syndrome is an autosomal dominant disorder characterized by abnormal development of liver, heart, skeleton, eye, face and, less frequently, kidney. Analyses of many patients with cytogenetic deletions or rearrangements have mapped the gene to chromosome 20p12, although deletions are found in a relatively small proportion of patients (< 7%). We have mapped the human Jagged1 gene (JAG1), encoding a ligand for the developmentally important Notch transmembrane receptor, to the Alagille syndrome critical region within 20p12. The Notch intercellular signalling pathway has been shown to mediate cell fate decisions during development in invertebrates and vertebrates. We demonstrate four distinct coding mutations in JAG1 from four Alagille syndrome families, providing evidence that it is the causal gene for Alagille syndrome. All four mutations lie within conserved regions of the gene and cause translational frameshifts, resulting in gross alterations of the protein product Patients with cytogenetically detectable deletions including JAG1 have Alagille syndrome, supporting the hypothesis that haploinsufficiency for this gene is one of the mechanisms causing the Alagille syndrome phenotype.
Noonan syndrome (NS) is a common, clinically and genetically heterogeneous condition characterized by distinctive facial features, short stature, chest deformity, congenital heart disease, and other comorbidities. Gene mutations identified in individuals with the NS phenotype are involved in the Ras/MAPK (mitogen-activated protein kinase) signal transduction pathway and currently explain ∼61% of NS cases. Thus, NS frequently remains a clinical diagnosis. Because of the variability in presentation and the need for multidisciplinary care, it is essential that the condition be identified and managed comprehensively. The Noonan Syndrome Support Group (NSSG) is a nonprofit organization committed to providing support, current information, and understanding to those affected by NS. The NSSG convened a conference of health care providers, all involved in various aspects of NS, to develop these guidelines for use by pediatricians in the diagnosis and management of individuals with NS and to provide updated genetic findings.
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientifi statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish as well as human induced pluripotent stem cell–based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care–related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Paired box (PAX) genes play a critical role in human development and disease. The PAX2 gene is expressed in primitive cells of the kidney, ureter, eye, ear and central nervous system. We have conducted a mutational analysis of PAX2 in a family with optic nerve colobomas, renal hypoplasia, mild proteinuria and vesicoureteral reflux. We report a single nucleotide deletion in exon five, causing a frame-shift of the PAX2 coding region in the octapeptide domain. The phenotype resulting from the PAX2 mutation in this family was very similar to abnormalities that have been reported in Krd mutant mice. These data suggest that PAX2 is required for normal kidney and eye development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.