Artificial Intelligence and Machine Learning (AI/ML) models are increasingly criticized for their “black-box” nature. Therefore, eXplainable AI (XAI) approaches to extract human-interpretable decision processes from algorithms have been explored. However, XAI research lacks understanding of algorithmic explainability from a human factors’ perspective. This paper presents a repeatable human factors heuristic analysis for XAI with a demonstration on four decision tree classifier algorithms.
Human decision makers typically use heuristics under time-pressured situations. These heuristics can potentially degrade task performance through the impact of their associated biases. Using object identification in image analysis as the context, this paper identifies cognitive biases that play a role in decision making. We propose a decision support system to help overcome these biases in this context. Results show that the decision support system improved human decision making in object identification, including metrics such as time taken to identify targets in an image set, accuracy of target identification, accuracy of target classification, and quantity of false positive identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.