Glutathione peroxidase, a selenium-containing enzyme, is believed to protect cells from the toxicity of hydroperoxides. The physiological role of this enzyme has previously been implicated mainly using animals fed with a selenium-deficient diet. Although selenium deficiency also affects the activity of several other cellular selenium-containing enzymes, a dramatic decrease of glutathione peroxidase activity has been postulated to play a role in the pathogenesis of a number of diseases, particularly those whose progression is associated with an overproduction of reactive oxygen species, found in selenium-deficient animals. To further clarify the physiological relevance of this enzyme, a model of mice deficient in cellular glutathione peroxidase (GSHPx-1), the major isoform of glutathione peroxidase ubiquitously expressed in all types of cells, was generated by gene-targeting technology. Mice deficient in this enzyme were apparently healthy and fertile and showed no increased sensitivity to hyperoxia. Their tissues exhibited neither a retarded rate in consuming extracellular hydrogen peroxide nor an increased content of protein carbonyl groups and lipid peroxidation compared with those of wild-type mice. However, platelets from GSHPx-1-deficient mice incubated with arachidonic acid generated less 12-hydroxyeicosatetraenoic acid and more polar products relative to control platelets at a higher concentration of arachidonic acid, presumably reflecting a decreased ability to reduce the 12-hydroperoxyeicosatetraenoic acid intermediate. These results suggest that the contribution of GSHPx-1 to the cellular antioxidant mechanism under normal animal development and physiological conditions and to the pulmonary defense against hyperoxic insult is very limited. Nevertheless, the potential antioxidant role of this enzyme in protecting cells and animals against the pathogenic effect of reactive oxygen species in other disorders remains to be defined. The knockout mouse model described in this report will also provide a new tool for future study to distinguish the physiological role of this enzyme from other selenium-containing proteins in mammals under normal and disease states.
Copper-zinc superoxide dismutase (CuZn-SOD) is believed to play a major role in the first line of antioxidant defense by catalyzing the dismutation of superoxide anion radicals to form hydrogen peroxide and molecular oxygen. Recent studies have shown that missense mutations in this gene contribute, evidently through a gain-of-function mechanism, to about 20% of familial amyotrophic lateral sclerosis. To define further the physiologic role of this enzyme, a model of mice deficient in this enzyme was generated using gene targeting technology. Mice lacking this enzyme were apparently healthy and displayed no increased sensitivity to hyperoxia. However, they exhibited a pronounced susceptibility to paraquat toxicity. Most surprisingly, female homozygous knock-out mice showed a markedly reduced fertility compared with that of wild-type and heterozygous knock-out mice. Further studies revealed that although these mice ovulated and conceived normally, they exhibited a marked increase in embryonic lethality. These data, for the first time, suggest a role of oxygen free radicals in causing abnormality of female reproduction in mammals.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of many clinical disorders such as adult respiratory distress syndrome, ischemia-reperfusion injury, atherosclerosis, neurodegenerative diseases, and cancer. Genetically engineered animal models have been used as a tool for understanding the function of various antioxidant enzymes in cellular defense mechanisms against various types of oxidant tissue injury. Transgenic mice overexpressing three isoforms of superoxide dismutase, catalase, and the cellular glutathione peroxidase (GSHPx-1) in various tissues show an increased tolerance to ischemia-reperfusion heart and brain injury, hyperoxia, cold-induced brain edema, adriamycin, and paraquat toxicity. These results have provided for the first time direct evidence demonstrating the importance of each of these antioxidant enzymes in protecting the animals against the injury resulting from these insults, as well as the effect of an enhanced level of antioxidant in ameliorating the oxidant tissue injury. To evaluate further the nature of these enzymes in antioxidant defense, gene knockout mice deficient in copper-zinc superoxide dismutase (CuZnSOD) and GSHPx-1 have also been generated in our laboratory. These mice developed normally and showed no marked pathologic changes under normal physiologic conditions. In addition, a deficiency in these genes had no effects on animal survival under hyperoxida. However, these knockout mice exhibited a pronounced susceptibility to paraquat toxicity and myocardial ischemia-reperfusion injury. Furthermore, female mice lacking CuZnSOD also displayed a marked increase in postimplantation embryonic lethality. These animals should provide a useful model for uncovering the identity of ROS that participate in the pathogenesis of various clinical disorders and for defining the role of each antioxidant enzyme in cellular defense against oxidant-mediated tissue injury.ImagesFigure 1Figure 3Figure 4
This article is available online at http://dmd.aspetjournals.org A common theme in cell physiology is that endogenous metabolites regulate their own levels, through both feed-back and feed-forward mechanisms. Many of these molecules exert their effects by activating transcription factors of the nuclear receptor superfamily. A prominent class of such endogenous metabolites is the "oxysterols
Reactive oxygen species (ROS) have been implicated in the pathogenesis of many clinical disorders such as adult respiratory distress syndrome, ischemia-reperfusion injury, atherosclerosis, neurodegenerative diseases, and cancer. Genetically engineered animal models have been used as a tool for understanding the function of various antioxidant enzymes in cellular defense mechanisms against various types of oxidant tissue injury. Transgenic mice overexpressing three isoforms of superoxide dismutase, catalase, and the cellular glutathione peroxidase (GSHPx-1) in various tissues show an increased tolerance to ischemia-reperfusion heart and brain injury, hyperoxia, cold-induced brain edema, adriamycin, and paraquat toxicity. These results have provided for the first time direct evidence demonstrating the importance of each of these antioxidant enzymes in protecting the animals against the injury resulting from these insults, as well as the effect of an enhanced level of antioxidant in ameliorating the oxidant tissue injury. To evaluate further the nature of these enzymes in antioxidant defense, gene knockout mice deficient in copper-zinc superoxide dismutase (CuZnSOD) and GSHPx-1 have also been generated in our laboratory. These mice developed normally and showed no marked pathologic changes under normal physiologic conditions. In addition, a deficiency in these genes had no effects on animal survival under hyperoxia. However, these knockout mice exhibited a pronounced susceptibility to paraquat toxicity and myocardial ischemia-reperfusion injury. Furthermore, female mice lacking CuZnSOD also displayed a marked increase in postimplantation embryonic lethality. These animals should provide a useful model for uncovering the identity of ROS that participate in the pathogenesis of various clinical disorders and for defining the role of each antioxidant enzyme in cellular defense against oxidant-mediated tissue injury. -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.