We created a model of HIV-1 infection of conventional mice for investigation of viral replication, control, and pathogenesis. To target HIV-1 to mice, the coding region of gp120 in HIV-1/NL4-3 was replaced with that of gp80 from ecotropic murine leukemia virus, a retrovirus that infects only rodents. The resulting chimeric virus construct, EcoHIV, productively infected murine lymphocytes, but not human lymphocytes, in culture. Adult, immunocompetent mice were readily susceptible to infection by a single inoculation of EcoHIV as shown by detection of virus in splenic lymphocytes, peritoneal macrophages, and the brain. The virus produced in animals was infectious, as shown by passage in culture, and immunogenic, as shown by induction of antibodies to HIV-1 Gag and Tat. A second chimeric virus based on clade D HIV-1/NDK was also highly infectious in mice; it was detected in both spleen and brain 3 wk after tail vein inoculation, and it induced expression of infection response genes, MCP-1, STAT1, IL-1beta, and complement component C3, in brain tissue as determined by quantitative real-time PCR. EcoHIV infection of mice forms a useful model of HIV-1 infection of human beings for convenient and safe investigation of HIV-1 therapy, vaccines, and potentially pathogenesis.
Human astrocytes can be infected with human immunodeficiency virus type 1 (HIV-1) in vitro and in vivo, but, in contrast to T lymphocytes and macrophages, virus expression is inefficient. To investigate the HIV-1 life cycle in human fetal astrocytes, we infected cells with HIV-1 pseudotyped with envelope glycoproteins of either amphotropic murine leukemia virus or vesicular stomatitis virus. Infection by both pseudotypes was productive and long lasting and reached a peak of 68% infected cells and 1.7 g of viral p24 per ml of culture supernatant 7 days after virus inoculation and then continued with gradually declining levels of virus expression through 7 weeks of follow-up. This contrasted with less than 0.1% HIV-1 antigen-positive cells and 400 pg of extracellular p24 per ml at the peak of astrocyte infection with native HIV-1. Cell viability and growth kinetics were similar in infected and control cells. Northern blot analysis revealed the presence of major HIV-1 RNA species of 9, 4, and 2 kb in astrocytes exposed to pseudotyped (but not wild-type) HIV-1 at 2, 14, and 28 days after infection. Consistent with productive infection, the 9-and 4-kb viral transcripts in astrocytes infected by pseudotyped HIV-1 were as abundant as the 2-kb mRNA during 4 weeks of follow-up, and both structural and regulatory viral proteins were detected in infected cells by immunoblotting or cell staining. The progeny virus released by these cells was infectious. These results indicate that the major barrier to HIV-1 infection of primary astrocytes is at virus entry and that astrocytes have no intrinsic intracellular restriction to efficient HIV-1 replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.