SynopsisImproved methods for the synthesis of p-bis(dimethylhydroxysily1)benzene are described. This useful monomer was prepared from p-bis(dimethylhydrogensily1)benzene which wm obtained in 60-70a/, yields from p-dibromobenzene and dimethylchlorosilane by use of an in situ Grignard technique. The great reluctance due to steric factors of the p-silphenylene-siloxane configuration to form cyclic structures has been amply demonstrated. The condensation polymerization of p-bis( dimethylhydroxy-sily1)benzene in benzene solution has yielded high molecular weight, crystalline poly-(tetramethyl-p-silphenylene-siloxanes). The heat of fusion A H , of the tetramethyl-psilphenylene-siloxane wa8 found to be 4350 cal./unit. The modified Staudinger equation relating intrinsic viscosity and weight-average molecular weight was applicable over a range of '70,000-400,000. These results are summarized in the relationship, [?] = I .12 X 10-4Mw0.75. Tetraniethyl-p-silphenylene-siloxaIies were found to be more stable than diinetliy1siloxitnes both to atmospheric oxidation and degradation through volatile formation in the temperature range 200-305°C.
1. Real-time quantitative reverse transcription-polymerase chain reaction methodology (TaqMan(R)) was used to examine the induction of some selected rat hepatic cyto-chrome P450 (CYP) forms in vivo and in vitro using cultured precision-cut liver slices. 2. TaqMan primers and probe sets were developed for rat CYP1A1, CYP1A2, CYP2B1, CYP2B1/2, CYP3A1, CYP3A2 and CYP4A1 mRNAs. 3. To characterize the responsiveness of the rat CYP mRNA TaqMan primers and probe sets, rats were treated in vivo with a single intraperitoneal dose of 500 mg kg(-1) Aroclor 1254 (ARO) and with four daily oral doses of either 50 mg kg(-1) day(-1) dexamethasone (DEX) or 75 mg kg(-1) day(-1) methylclofenapate (MCP). Treatment with ARO produced 22 600-, 5480-, 648-, 52-, 47- and 9-fold increases in levels of CYP1A1, CYP2B1, CYP2B1/2, CYP1A2, CYP3A1 and CYP3A2 mRNA, respectively. DEX treatment produced 97-, 24-, 8- and 4-fold increases, respectively, in CYP3A1, CYP2B1, CYP2B1/2 and CYP3A2 mRNA levels, and MCP produced 339-, 126- and 25-fold increases, respectively, in CYP4A1, CYP2B1 and CYP2B1/2 mRNA levels. All three CYP inducers also increased microsomal CYP content and produced corresponding increases in CYP1A, CYP2B, CYP3A and CYP4A form marker enzyme activities. 4. Rat liver slices were cultured for 6 and 24 h in medium containing 0.1 micro M insulin and 0.1 micro M DEX, and also for 24 h in medium containing only 0.1 micro M insulin (DEX-free medium). Liver slices were cultured in control medium or in medium containing either 10 micro M beta-naphthoflavone (BNF), 10 micro g ml(-1) ARO, 500 micro M sodium phenobarbitone (NaPB), 20 micro M pregnenolone-16alpha -carbonitrile (PCN), 50 micro M Wy-14,643 (WY) or 50 micro M MCP. 5. With the exception of the effect of BNF on CYP1A1 mRNA levels, the induction of all the CYP mRNAs studied was greater after 24- than after 6-h treatment. Generally, the magnitude of induction of CYP mRNA levels was greater after 24 h in liver slices cultured in DEX-free than in DEX-supplemented medium. 6. Treatment of liver slices with BNF and ARO for 24 h in DEX-free medium produced 21- and 35-fold increases, respectively, and 38- and 37-fold increases, respectively, in CYP1A1 and CYP1A2 mRNA levels. NaPB, PCN, WY and MCP did not increase either CYP1A1 or CYP1A2 mRNA levels. 7. After 24 h, levels of CYP2B1/2 mRNA were increased 18-, 20-, 9-, 16- and 13-fold by treatment with ARO, NaPB, PCN, WY and MCP, respectively. PCN also produced 56- and 4-fold increases, respectively, in CYP3A1 and CYP3A2 mRNA levels. 8. Treatment with WY and MCP for 24 h produced 437- and 186-fold increases, respectively, in levels of CYP4A1 mRNA. None of the other CYP inducers studied had any effect on CYP4A1 mRNA levels. 9. The results demonstrate the utility of cultured precision-cut liver slices as an in vitro model system to evaluate the effects of xenobiotics on rat CYP1A, CYP2B, CYP3A and CYP4A form mRNA levels.
IVIG may be useful for the treatment of SMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.