BACKGROUND
Pulse wave velocity (PWV) is blood pressure (BP) dependent, leading to the development of the BP-corrected metrics cardio-ankle vascular index (CAVI) and CAVI0. We aimed to assess risk prediction by heart-to-ankle PWV (haPWV), CAVI, and CAVI0 in a US population.
METHODS
We included 154 subjects (94.8% male; 47.7% African American) with and without heart failure (HF). Left and right haPWV, CAVI, and CAVI0 were measured with the VaSera 1500N device. We prospectively followed participants for a mean of 2.56 years for the composite endpoint death or HF-related hospital admission (DHFA).
RESULTS
Left and right haPWV, CAVI, and CAVI0 values did not differ significantly. In unadjusted analyses, haPWV (left standardized hazard ratio [HR] = 1.51, P = 0.007; right HR = 1.66, P = 0.003), CAVI (left HR = 1.45, P = 0.012; right HR = 1.58, P = 0.006), and CAVI0 (left HR = 1.39, P = 0.022; right HR = 1.44, P = 0.014) significantly predicted DHFA. Predictive ability showed a decreasing trend from haPWV to CAVI to CAVI0; in line with the increasing amount of BP correction in these metrics. In Cox models, right-sided metrics showed a trend toward stronger predictive ability than left-sided metrics. After adjustment for baseline HF status, the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) risk score, and systolic BP, right haPWV (HR = 1.58, P = 0.025) and CAVI (HR = 1.44, P = 0.044), but no other stiffness metrics, remained predictive.
CONCLUSIONS
Although conceptually attractive, BP-corrected arterial stiffness metrics do not offer better prediction of DHFA than conventional arterial stiffness metrics, nor do they predict DHFA independently of systolic BP. Our findings support PWV as the primary arterial stiffness metric for outcome prediction.