Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine.
The present study was developed to reinforce a thermoplastic matrix with carbonaceous material to improve its thermal and mechanical properties. Composite materials formed from the homogenization of polylactic acid (PLA) and reduced graphitic oxide (RGO) were synthesized and characterized, reinforcement of the polymer’s thermomechanical properties and the adequate homogeneity ratio in the dispersion of the composite material were studied. Graphitic oxide (GO) was synthesized by the modified Hummers method, followed by thermal exfoliation. The chemical composition and the structure of RGO were studied by infrared (FT-IR) and Raman spectroscopies, respectively. PLA composites with different RGO contents (2 and 3% by weight) were prepared and compared in terms of distribution of RGO in the matrix and morphology, using scanning electron microscopy. The thermal stability of the composites was determined through thermogravimetric analysis. Torque of the different composites was measured, which increased at 21%; the tensile test showed an improvement in the mechanical parameters of the composites because the RGO favors the rigidity of the composite. In addition, the oxygenated functional groups present in the RGO allowed a more significant interaction with the PLA matrix, which results in an effective reinforcement of the mechanical properties of the composite material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.