Background The availability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologic testing has rapidly increased. Current assays use a variety of technologies, measure different classes of immunoglobulin or immunoglobulin combinations and detect antibodies directed against different portions of the virus. The overall accuracy of these tests, however, has not been well-defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the coronavirus disease 2019 (COVID-19) serology literature and construct best practice guidance related to SARS-CoV-2 serologic testing. This guideline is the fourth in a series of rapid, frequently updated COVID-19 guidelines developed by IDSA. Objective IDSA’s goal was to develop evidence-based recommendations that assist clinicians, clinical laboratories, patients and policymakers in decisions related to the optimal use of SARS-CoV-2 serologic tests in a variety of settings. We also highlight important unmet research needs pertaining to the use of anti-SARS-CoV-2 antibody tests for diagnosis, public health surveillance, vaccine development and the selection of convalescent plasma donors. Methods A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 serologic tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. Results The panel agreed on eight diagnostic recommendations. Conclusions Information on the clinical performance and utility of SARS-CoV-2 serologic tests are rapidly emerging. Based on available evidence, detection of anti-SARS-CoV-2 antibodies may be useful for confirming the presence of current or past infection in selected situations. The panel identified three potential indications for serologic testing including: 1) evaluation of patients with a high clinical suspicion for COVID-19 when molecular diagnostic testing is negative and at least two weeks have passed since symptom onset; 2) assessment of multisystem inflammatory syndrome in children; and 3) for conducting serosurveillance studies. The certainty of available evidence supporting the use of serology for either diagnosis or epidemiology was, however, graded as very low to moderate.
Background Accurate molecular diagnostic tests are necessary for confirming a diagnosis of coronavirus disease 2019 (COVID-19). Direct detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acids in respiratory tract specimens informs patient, healthcare institution and public health level decision-making. The numbers of available SARS-CoV-2 nucleic acid detection tests are rapidly increasing, as is the COVID-19 diagnostic literature. Thus, the Infectious Diseases Society of America (IDSA) recognized a significant need for frequently updated systematic reviews of the literature to inform evidence-based best practice guidance. Objective The IDSA’s goal was to develop an evidence-based diagnostic guideline to assist clinicians, clinical laboratorians, patients and policymakers in decisions related to the optimal use of SARS-CoV-2 nucleic acid amplification tests. In addition, we provide a conceptual framework for understanding molecular diagnostic test performance, discuss the nuance of test result interpretation in a variety of practice settings and highlight important unmet research needs in the COVID-19 diagnostic testing space. Methods IDSA convened a multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review to identify and prioritize clinical questions and outcomes related to the use of SARS-CoV-2 molecular diagnostics. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. Results The panel agreed on 17 diagnostic recommendations. Conclusions Universal access to accurate SARS-CoV-2 nucleic acid testing is critical for patient care, hospital infection prevention and the public response to the COVID-19 pandemic. Information on the clinical performance of available tests is rapidly emerging, but the quality of evidence of the current literature is considered moderate to very low. Recognizing these limitations, the IDSA panel weighed available diagnostic evidence and recommends nucleic acid testing for all symptomatic individuals suspected of having COVID-19. In addition, testing is recommended for asymptomatic individuals with known or suspected contact with a COVID-19 case. Testing asymptomatic individuals without known exposure is suggested when the results will impact isolation/quarantine/personal protective equipment (PPE) usage decisions, dictate eligibility for surgery, or inform solid organ or hematopoietic stem cell transplantation timing. Ultimately, prioritization of testing will depend on institutional-specific resources and the needs of different patient populations.
A bundled intervention was associated with clinically important and statistically significant reductions in KPC colonization, KPC infection, all-cause bacteremia, and blood culture contamination in a high-risk LTACH population.
IMPORTANCE Risks for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care personnel (HCP) are unclear. OBJECTIVE To evaluate the risk factors associated with SARS-CoV-2 seropositivity among HCP with the a priori hypothesis that community exposure but not health care exposure was associated with seropositivity. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was conducted among volunteer HCP at 4 large health care systems in 3 US states. Sites shared deidentified data sets, including previously collected serology results, questionnaire results on community and workplace exposures at the time of serology, and 3-digit residential zip code prefix of HCP. Site-specific responses were mapped to a common metadata set. Residential weekly coronavirus disease 2019 (COVID-19) cumulative incidence was calculated from state-based COVID-19 case and census data. EXPOSURES Model variables included demographic (age, race, sex, ethnicity), community (known COVID-19 contact, COVID-19 cumulative incidence by 3-digit zip code prefix), and health care (workplace, job role, COVID-19 patient contact) factors. MAIN OUTCOME AND MEASURES The main outcome was SARS-CoV-2 seropositivity. Risk factors for seropositivity were estimated using a mixed-effects logistic regression model with a random intercept to account for clustering by site. RESULTS Among 24 749 HCP, most were younger than 50 years (17 233 [69.6%]), were women (19 361 [78.2%]), were White individuals (15 157 [61.2%]), and reported workplace contact with patients with COVID-19 (12 413 [50.2%]). Many HCP worked in the inpatient setting (8893 [35.9%]) and were nurses (7830 [31.6%]). Cumulative incidence of COVID-19 per 10 000 in the community up to 1 week prior to serology testing ranged from 8.2 to 275.6; 20 072 HCP (81.1%) reported no COVID-19 contact in the community. Seropositivity was 4.4% (95% CI, 4.1%-4.6%; 1080 HCP) overall. In multivariable analysis, community COVID-19 contact and community COVID-19 cumulative incidence were associated with seropositivity
BACKGROUND Hospitalized patients who are colonized with methicillin-resistant Staphylococcus aureus (MRSA) are at high risk for infection after discharge. METHODS We conducted a multicenter, randomized, controlled trial of postdischarge hygiene education, as compared with education plus decolonization, in patients colonized with MRSA (carriers). Decolonization involved chlorhexidine mouthwash, baths or showers with chlorhexidine, and nasal mupirocin for 5 days twice per month for 6 months. Participants were followed for 1 year. The primary outcome was MRSA infection as defined according to Centers for Disease Control and Prevention (CDC) criteria. Secondary outcomes included MRSA infection determined on the basis of clinical judgment, infection from any cause, and infection-related hospitalization. All analyses were performed with the use of proportional-hazards models in the per-protocol population (all participants who underwent randomization, met the inclusion criteria, and survived beyond the recruitment hospitalization) and as-treated population (participants stratified according to adherence). RESULTS In the per-protocol population, MRSA infection occurred in 98 of 1063 participants (9.2%) in the education group and in 67 of 1058 (6.3%) in the decolonization group; 84.8% of the MRSA infections led to hospitalization. Infection from any cause occurred in 23.7% of the participants in the education group and 19.6% of those in the decolonization group; 85.8% of the infections led to hospitalization. The hazard of MRSA infection was significantly lower in the decolonization group than in the education group (hazard ratio, 0.70; 95% confidence interval [CI], 0.52 to 0.96; P=0.03; number needed to treat to prevent one infection, 30; 95% CI, 18 to 230); this lower hazard led to a lower risk of hospitalization due to MRSA infection (hazard ratio, 0.71; 95% CI, 0.51 to 0.99). The decolonization group had lower likelihoods of clinically judged infection from any cause (hazard ratio, 0.83; 95% CI, 0.70 to 0.99) and infection-related hospitalization (hazard ratio, 0.76; 95% CI, 0.62 to 0.93); treatment effects for secondary out-comes should be interpreted with caution owing to a lack of prespecified adjustment for multiple comparisons. In as-treated analyses, participants in the decolonization group who adhered fully to the regimen had 44% fewer MRSA infections than the education group (hazard ratio, 0.56; 95% CI, 0.36 to 0.86) and had 40% fewer infections from any cause (hazard ratio, 0.60; 95% CI, 0.46 to 0.78). Side effects (all mild) occurred in 4.2% of the participants. CONCLUSIONS Postdischarge MRSA decolonization with chlorhexidine and mupirocin led to a 30% lower risk of MRSA infection than education alone. (Funded by the AHRQ Healthcare-Associated Infections Program and others; ClinicalTrials.gov number, NCT01209234.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.