Dorzolamide hydrochloride is frequently administered for the control of the intra-ocular pressure associated with glaucoma. The aim of this study is to develop and optimize self-assembled nanostructures of dorzolamide hydrochloride and L-α-Phosphatidylcholine to improve the pharmacokinetic parameters and extend the drug pharmacological action. Self-assembled nanostructures were prepared using a modified thin-film hydration technique. The formulae compositions were designed based on response surface statistical design. The prepared self-assembled nanostructures were characterized by testing their drug content, particle size, polydispersity index, zeta potential, partition coefficient, release half-life and extent. The optimized formulae having the highest drug content, zeta potential, partition coefficient, release half-life and extent with the lowest particle size and polydispersity index were subjected to further investigations including investigation of their physicochemical, morphological characteristics, in vivo pharmacokinetic and pharmacodynamic profiles. The optimized formulae were prepared at pH 8.7 (F5 and F6) and composed of L-α-Phosphatidylcholine and drug mixed in a ratio of 1:1 and 2:1 w/w, respectively. They showed significantly higher Cmax, and at the aqueous humor with extended control over the intra-ocular pressure, when compared to the marketed product; Trusopt®. The study introduced novel and promising self-assembled formulae able to permeate higher drug amount through the cornea and achieve sustained pharmacological effect at the site of action.
Numerous obstacles challenge the treatment of fungal infections, including the uprising resistance and the low penetration of available drugs. One of the main active agents against fungal infections is itraconazole (ITZ), with activity against a broad spectrum of fungi while having few side effects. The aim of this study was to design ufasomes, oleic acid-based colloidal carriers, that could encapsulate ITZ to improve its penetration power. Employing a 2231 factorial design, the effect of three independent factors (oleic acid amount, cholesterol concentration, and ITZ amount) was investigated and evaluated for the percentage encapsulation efficiency (%EE), particle size (PS), and zeta potential (ZP). Optimization was performed using Design® expert software and the optimized ITZ-loaded ufasomes obtained had %EE of 99.4 ± 0.7%, PS of 190 ± 1 nm, and ZP of −81.6 ± 0.4 mV, with spherical unilamellar morphology and no aggregation. An in vitro microbiological study was conducted to identify the minimum inhibitory concentration of the selected formula against Candida albicans, which was found to be 0.0625 μg/mL. Moreover, the optimized formula reduced the expression of toll-like receptors-4 and pro-inflammatory cytokine IL-1β secretion in the C. albicans-infected fibroblasts, indicating that the proposed ITZ-loaded ufasomes are a promising drug delivery system for ITZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.