Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
BACKGROUND:Despite the widespread institution of modern massive transfusion protocols with balanced blood product ratios, survival for patients with traumatic hemorrhage receiving ultramassive transfusion (UMT) (defined as ≥20 U of packed red blood cells [RBCs]) in 24 hours) remains low and resource consumption remains high. Therefore, we aimed to identify factors associated with mortality in trauma patients receiving UMT in the modern resuscitation era. METHODS:An Eastern Association for the Surgery of Trauma multicenter retrospective study of 461 trauma patients from 17 trauma centers who received ≥20 U of RBCs in 24 hours was performed (2014)(2015)(2016)(2017)(2018)(2019). Multivariable logistic regression and Classification and Regression Tree analysis were used to identify clinical characteristics associated with mortality. RESULTS:The 461 patients were young (median age, 35 years), male (82%), severely injured (median Injury Severity Score, 33), in shock (median shock index, 1.2; base excess, −9), and transfused a median of 29 U of RBCs, 22 U of fresh frozen plasma (FFP), and 24 U of platelets (PLT). Mortality was 46% at 24 hours and 65% at discharge. Transfusion of RBC/FFP ≥1.5:1 or RBC/PLT ≥1.5:1 was significantly associated with mortality, most pronounced for the 18% of patients who received both RBC/PLT and RBC/FFP ≥1.5:1 (odds ratios, 3.11 and 2.81 for mortality at 24 hours and discharge; both p < 0.01). Classification and Regression Tree identified that age older than 50 years, low initial Glasgow Coma Scale, thrombocytopenia, and resuscitative thoracotomy were associated with low likelihood of survival (14-26%), while absence of these factors was associated with the highest survival (71%). CONCLUSION:Despite modern massive transfusion protocols, one half of trauma patients receiving UMT are transfused with either RBC/FFP or RBC/PLT in unbalanced ratios ≥1.5:1, with increased associated mortality. Maintaining focus on balanced ratios during UMT is critical, and consideration of advanced age, poor initial mental status, thrombocytopenia, and resuscitative thoracotomy can aid in prognostication.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
In healthcare, the goal of maximizing value by improving the quality of care and lowering costs has been notoriously challenging to achieve. The fee-for-service model in gynecology and other fields has historically promoted the reduction of nonsurgical or minimally invasive approaches in favor of complex, often morbid procedures. In this review, we seek to define quality and value in the healthcare field and describe strategies that promote quality over production. We then discuss national, non−specialty-based efforts in the context of Surgical Care Improvement Project measures to improve quality of care. Finally, we present a case study through the Kaiser Permanente Minimally Invasive Hysterectomy Initiative, one such model that successfully built on the quality metrics of the foregoing strategies to improve patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.