Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of MnIIIP/MnIIP redox couple, ranged from −200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2 > 0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1 mM) and MnPs (1 or 5 μM) alone did not trigger any alteration in cell viability, combined treatment suppressed cell viability up to 95%. No toxicity was observed with normal human breast epithelial HBL100 cells. Bell-shape relationship, essentially identical to vo(Asc)ox vs E1/2, was also demonstrated between MnP/Asc-controlled cellular cytotoxicity and E1/2-controlled vo(Asc)ox. Magnetic resonance imaging studies were conducted to explore the impact of ascorbate on T1-relaxivity. The impact of MnP/Asc on intracellular thiols and on GSH/GSSG and Cys/CySS ratios in 4T1 cells was assessed and cellular reduction potentials were calculated. The data indicate a significant increase in cellular oxidative stress induced by MnP/Asc. Based on vo(Asc)ox vs E1/2 relationships and cellular cytotoxicity, MnTE-2-PyP5+ was identified as the best catalyst among MnPs studied. Asc and MnTE-2-PyP5+ were thus tested in a 4T1 mammary mouse flank tumor model. The combination of ascorbate (4 g/kg) and MnTE-2-PyP5+ (0.2 mg/kg) showed significant suppression of tumor growth relative to either MnTE-2-PyP5+ or ascorbate alone. In addition to optimal vo(Asc)ox, the compound mu...
Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313-337.
Purpose Normal tissue injury is dose limiting for radiotherapy (RT) in nearly every application. This provides strong rationale for developing new classes of novel radioprotectors. The caveat is that radioprotective drugs must be selective for normal tissue and not tumor. Here we tested the effects of a novel Mn porphyrin oxidative stress modifier, MnBuOE for its radioprotective and radiosensitizing properties in normal tissue vs. tumor, respectively. Methods Murine oral mucosa and salivary glands were treated with a range of radiation doses, ±MnBuOE to establish the dose effect curves for mucositis and xerostomia. Radiation injury was quantified by intravital NIR imaging of cathepsin activity, assessment of salivation and histological analysis. To evaluate effects of MnBuOE on the tumor radiation response, we administered the drug as an adjuvant to fractionated radiation of FaDu xenografts. Again, a range of RT doses were administered to establish the radiation dose effect curve. The TCD50 values ±MnBuOE and dose modifying factor were determined. Results MnBuOE protected normal tissue by reducing RT-mediated mucositis, xerostomia and fibrosis. The dose modifying factor for protection against xerostomia was 0.77. In contrast, MnBuOE increased tumor local control rates, compared to controls. The dose modifying factor, based on the ratio of TCD50 values, was 1.3. Immunohistochemistry showed that MnBuOE-treated tumors exhibited a significant influx of M1 tumor-associated macrophages, which provides mechanistic insight into its radiosensitizing effects in tumors. Conclusions MnBuOE widens the therapeutic margin by decreasing the dose of radiation required to control tumor, while increasing normal tissue resistance to RT-mediated injury. This is the first study to quantitatively demonstrate the magnitude of a single drug’s ability to radioprotect normal tissue while radiosensitizing tumor.
Canine appendicular osteosarcoma is commonly treated with limb amputation; however, limb‐sparing options are frequently desired or necessary for a subset of patients. We evaluated 123 patients and 130 sites treated with stereotactic body radiation therapy (SBRT). Eighty‐two out of 98 dogs (84%) had maximum lameness improvement at a median of 3 weeks for a median of 6 months duration. Histopathologic evaluation of available samples from amputation or necropsy revealed >80% tumor necrosis in 50% of limbs consistent with local disease control. Of evaluable patients, 41% fractured and 21% pursued an amputation after treatment. Fine needle aspirate (n = 52) and needle core biopsy (n = 28) did not result in increased fracture risk compared to those without tumor sampling (n = 50). Median survival time (MST) was 233 days and time to first event was 143 days. Gross tumor volume and planned target volume were significantly inversely associated with survival and tumor location was significantly associated with survival. Dogs with salvage amputation had a significantly longer MST compared to those without (346 vs 202 days; P = .04). The presence of metastatic disease at the time of treatment in 15 dogs did not significantly impact survival time (200 vs 237 days without metastasis; P = .58). Skin side effects correlated significantly with dose with 33% of patients with acute grade 3 effects developing consequential late grade 3 effects. While SBRT improves lameness in most patients, further investigation is needed to identify candidates with minimal early fracture risk prior to initiating therapy.
PurposeUnresectable chest wall recurrences of breast cancer (CWR) in heavily pretreated patients are especially difficult to treat. We hypothesised that thermally enhanced drug delivery using low temperature liposomal doxorubicin (LTLD), given with mild local hyperthermia (MLHT), will be safe and effective in this population.Patients and methodsThis paper combines the results of two similarly designed phase I trials. Eligible CWR patients had progressed on the chest wall after prior hormone therapy, chemotherapy, and radiotherapy. Patients were to get six cycles of LTLD every 21–35 days, followed immediately by chest wall MLHT for 1 hour at 40–42 °C. In the first trial 18 subjects received LTLD at 20, 30, or 40 mg/m2; in the second trial, 11 subjects received LTLD at 40 or 50 mg/m2.ResultsThe median age of all 29 patients enrolled was 57 years. Thirteen patients (45%) had distant metastases on enrolment. Patients had received a median dose of 256 mg/m2 of prior anthracyclines and a median dose of 61 Gy of prior radiation. The median number of study treatments that subjects completed was four. The maximum tolerated dose was 50 mg/m2, with seven subjects (24%) developing reversible grade 3–4 neutropenia and four (14%) reversible grade 3–4 leucopenia. The rate of overall local response was 48% (14/29, 95% CI: 30–66%), with. five patients (17%) achieving complete local responses and nine patients (31%) having partial local responses.ConclusionLTLD at 50 mg/m2 and MLHT is safe. This combined therapy produces objective responses in heavily pretreated CWR patients. Future work should test thermally enhanced LTLD delivery in a less advanced patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.