Myeloid-derived suppressor cells (MDSCs IntroductionA major barrier to effective cancer immunotherapy is immune suppression, and the accumulation of myeloid-derived suppressor cells (MDSCs) has recently been recognized as a major mechanism to promote immune suppression (1, 2). MDSCs comprise a mixture of myeloid cells reflecting various stages of differentiation, and in mouse models, these cells are typically distinguished from other inhibitory myeloid populations based on their unique coexpression of macrophage (CD11b) and granulocyte (Gr-1) markers (1).Tumor-induced MDSCs are further dichotomized into monocytic and granulocytic subsets based on the differential expression of the Ly6G and Ly6C epitopes (3, 4). Intriguingly, granulocytic MDSCs outnumber monocytic MDSCs in numerous mouse tumor models (3, 5), although the basis for this subset dichotomy remains unclear. The phenotypes in humans are more complex and vary with tumor type. However, there is general agreement that a common lineage-negative MDSC subset observed among a range of human cancers bears the core phenotype CD33 + HLA-DR -(6-11). Interestingly, this subset resembles promyelocytes, a granulocytic population reflecting an early stage of differentiation (6, 7).Although many studies have been dedicated to the phenotypic characterization of MDSCs and unraveling mechanisms by which these cells mediate tumor progression, a large gap remains in our understanding of the mechanisms that initiate their development. It is known, however, that MDSC subsets emerge in response to tumor-derived factors (TDFs) and the signaling pathways these molecules engage. As a number of TDFs engage the STAT3 or STAT5 signaling pathway, STAT3 or STAT5 activation has been associated with various stages in MDSC biology (1,(12)(13)(14)(15)(16)(17)(18)(19).
The acetylating enzyme, spermidine/spermine N 1 -acetyltransferase, participates in polyamine homeostasis by regulating polyamine export and catabolism. Previously, we reported that overexpression of the enzyme in cultured tumor cells and mice activates metabolic flux through the polyamine pathway and depletes the N 1 -acetyltransferase coenzyme and fatty acid precursor, acetyl-CoA. Here, we investigate this possibility in spermidine/spermine N 1 -acetyltransferase transgenic mice in which the enzyme is systemically overexpressed and in spermidine/spermine N 1 -acetyltransferase knock-out mice. Tissues of the former were characterized by increased N 1 -acetyltransferase activity, a marked elevation in tissue and urinary acetylated polyamines, a compensatory increase in polyamine biosynthetic enzyme activity, and an increase in metabolic flux through the polyamine pathway. These polyamine effects were accompanied by a decrease in white adipose acetyl-and malonyl-CoA pools, a major (20-fold) increase in glucose and palmitate oxidation, and a distinctly lean phenotype. In SSAT-ko mice, the opposite relationship between polyamine and fat metabolism was observed. In the absence of N 1 -acetylation of polyamines, there was a shift in urinary and tissue polyamines indicative of a decline in metabolic flux. This was accompanied by an increase in white adipose acetyl-and malonyl-CoA pools, a decrease in adipose palmitate and glucose oxidation, and an accumulation of body fat. The latter was further exaggerated under a high fat diet, where knock-out mice gained twice as much weight as wild-type mice. A model is proposed whereby the expression status of spermidine/spermine N 1 -acetyltransferase alters body fat accumulation by metabolically modulating tissue acetyl-and malonyl-CoA levels, thereby influencing fatty acid biosynthesis and oxidation.The polyamines putrescine (Put), 3 spermidine (Spd), and spermine (Spm) are known for their critical role in supporting cell proliferation, albeit in ways that have not yet been clearly defined. For the most part, polyamines do not incorporate into macromolecules but rather bind electrostatically to negatively charged molecules, such as DNA, RNA, and phospholipids. Thus, as metabolically distinct entities, homeostatic control of intracellular polyamines is critical to their role in supporting cell proliferation. This is achieved by effector systems that regulate biosynthesis, catabolism, uptake, and export of these molecules. The enzyme, spermidine/spermine N 1 -acetyltransferase (SSAT), catalyzes the transfer of acetyl groups from acetyl-CoA to the terminal amines of polyamines and, thus, readies the molecule for export or catabolism via polyamine oxidase. The enzyme is short lived, sensitively regulated by intracellular polyamine pools, and highly inducible by polyamine analogues and various cytotoxic agents (1, 2).Although most antiproliferative strategies targeting the polyamine pathway seek to deplete intracellular pools by inhibiting biosynthesis, we have been investigating t...
The enzyme spermidine/spermine N 1 -acetyltransferase (SSAT) regulates the catabolism and export of intracellular polyamines. We have previously shown that activation of polyamine catabolism by conditional overexpression of SSAT has antiproliferative consequences in LNCaP prostate carcinoma cells. Growth inhibition was causally linked to high metabolic flux arising from a compensatory increase in polyamine biosynthesis. Here we examined the in vivo consequences of SSAT overexpression in a mouse model genetically predisposed to develop prostate cancer. TRAMP (transgenic adenocarcinoma of mouse prostate) female C57BL/6 mice carrying the SV40 early genes (T/t antigens) under an androgen-driven probasin promoter were cross-bred with male C57BL/6 transgenic mice that systemically overexpress SSAT. At 30 weeks of age, the average genitourinary tract weights of TRAMP mice were ϳ4 times greater than those of TRAMP/SSAT bigenic mice, and by 36 weeks, they were ϳ12 times greater indicating sustained suppression of tumor outgrowth. Tumor progression was also affected as indicated by a reduction in the prostate histopathological scores. By immunohistochemistry, SV40 large T antigen expression in the prostate epithelium was the same in TRAMP and TRAMP/SSAT mice. Consistent with the 18-fold increase in SSAT activity in the TRAMP/SSAT bigenic mice, prostatic N 1 -acetylspermidine and putrescine pools were remarkably increased relative to TRAMP mice, while spermidine and spermine pools were minimally decreased due to a compensatory 5-7-fold increase in biosynthetic enzymes activities. The latter led to heightened metabolic flux through the polyamine pathway and an associated ϳ70% reduction in the SSAT cofactor acetylCoA and a ϳ40% reduction in the polyamine aminopropyl donor S-adenosylmethionine in TRAMP/SSAT compared with TRAMP prostatic tissue. In addition to elucidating the antiproliferative and metabolic consequences of SSAT overexpression in a prostate cancer model, these findings provide genetic support for the discovery and development of specific small molecule inducers of SSAT as a novel therapeutic strategy targeting prostate cancer.
The mechanism of high-voltage pulse-induced permeabilization of the stratum corneum, the outer layer of the skin, is still not completely understood. It has been suggested that joule heating resulting from the applied pulse may play a major role in disrupting the stratum corneum. In this study, electrical and ultrastructural measurements were conducted to examine the temperature dependence of the pulse-induced permeabilization of the stratum corneum. The stratum corneum resistance was measured using a vertical diffusion holder, with the stratum corneum placed between two electrode-containing chambers. The stratum corneum resistance was reduced manyfold during the applied pulse. The extent of resistance reduction increased with pulse voltage until reaching a threshold value, above which the resistance reduction was less dependent on the pulse voltage. The stratum corneum was more susceptible to permeabilization at high temperature, the threshold voltage being lower. The stratum corneum resistance recovered within milliseconds after a single 0.3-ms pulse. High-temperature samples had a more prolonged recovery time. Using time-resolved freeze fracture electron microscopy, aggregates of lipid vesicles were observed in all samples pulsed above the threshold voltage. The sizes and fractional areas occupied by aggregates of lipid vesicles at 4 degrees C and at 25 degrees C were measured at different time points after the applied pulse. Aggregates of vesicles persisted long after the electric resistance was recovered. After pulsing at the same voltage of 80 V, samples at 4 degrees C were found to have slightly more extensive aggregate formation initially, but recovered more rapidly than those at 25 degrees C. The more rapid recovery of the 4 degrees C samples was likely due to a lower supra-threshold voltage. Viscoelastic instability propagation created by the pulse may also play a role in the recovery of the aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.