A wide range of food products are causing accidental reactions in patients with food allergy. Eight different allergens not declared on the ingredient lists were detected in the culprit food products, all of which were representative of allergens regulated in the European Union.
IntroductionTo reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age.MethodsIn 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model.ResultsUpon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years.ConclusionThe Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy.
Background: With advancing age, the composition of leukocyte subpopulations in peripheral blood is known to change, but how this change differs between men and women and how it relates to frailty is poorly understood. Our aim in this exploratory study was to investigate whether frailty is associated with changes in immune cell subpopulations and whether this differs between men and women. Therefore, we performed in-depth immune cellular profiling by enumerating a total of 37 subpopulations of T cells, B cells, NK cells, monocytes, and neutrophils in peripheral blood of 289 elderly people between 60-87 years of age. Associations between frailty and each immune cell subpopulation were tested separately in men and women and were adjusted for age and CMV serostatus. In addition, a random forest algorithm was used to predict a participant's frailty score based on enumeration of immune cell subpopulations. Results: In the association study, frailty was found to be associated with increased numbers of neutrophils in both men and in women. Frailer women, but not men, showed higher numbers of total and CD16monocytes, and lower numbers of both CD56 + T cells and late differentiated CD4 + TemRA cells. The random forest algorithm confirmed all the findings of the association studies in men and women. In men, the predictive accuracy of the algorithm was too low (5.5%) to warrant additional conclusions on top of the ones derived from the association study. In women however, the predictive accuracy was higher (23.1%), additionally revealing that total T cell numbers and total lymphocyte numbers also contribute in predicting frailty. Conclusions: In-depth immune cellular profiling revealed consistent associations of frailty with elevated numbers of myeloid cell subpopulations in both men and women. Furthermore, additional associations were found between frailty and lower numbers of some T cell subpopulations, in women only. Thus, our study indicates sex-specific associations of immune subpopulations with frailty. We hope that our study will prompt further investigation into the sex-specific immune mechanisms associated with the development of frailty.
Vaccine-induced protection against severe COVID-19, hospitalization, and death is of the utmost importance, especially in the elderly. However, limited data are available on humoral immune responses following COVID-19 vaccination in the general population across a broad age range. We performed an integrated analysis of the effect of age, sex, and prior SARS-CoV-2 infection on Spike S1-specific (S1) IgG concentrations up to three months post-BNT162b2 (Pfizer/BioNTech; Comirnaty) vaccination. In total, 1735 persons, eligible for COVID-19 vaccination through the national program, were recruited from the general population (12 to 92 years old). Sixty percent were female, and the median vaccination interval was 35 days (interquartile range, IQR: 35–35). All participants had seroconverted to S1 one month after two vaccine doses. S1 IgG was higher in participants with a history of SARS-CoV-2 infection (median: 4535 BAU/mL, IQR: 2341–7205) compared to infection-naive persons (1842 BAU/mL, 1019–3116), p < 0.001. In infection-naive persons, linear mixed effects regression showed a strong negative association between age and S1 IgG (p < 0.001) across the entire age range. Females had higher S1 IgG than males (p < 0.001). In persons with an infection history, age nor sex was associated with S1 IgG concentrations. The lower magnitude of S1 antibodies in older persons following COVID-19 vaccination will affect long-term protection.
Background: With advancing age, the composition of leukocyte subpopulations in peripheral blood is known to change, but how this change differs between men and women and how it relates to frailty is poorly understood. Thus, our aim in this exploratory study was to investigate whether frailty is associated with changes in immune cell subpopulations and whether associations differed between men and women. Therefore, we performed in-depth immune cell phenotyping by enumerating subsets of T cells, B cells, NK cells, monocytes, and neutrophils in peripheral blood of 289 elderly people between 60-87 years of age. Associations between frailty and each immune cell subpopulation were tested separately in men and women and were adjusted for age and CMV serostatus. In addition, a random forest algorithm was used to predict a participant’s frailty score based on enumeration of immune cell subpopulations. Results: Frailty was observed to be associated with numerical increases in neutrophils in men and in women. Furthermore, sex-specific associations were found with frailer men, but not women, showing higher numbers of non-classical monocytes and transitional B cells. In addition, frailer women, but not men, showed higher numbers of classical monocytes and lower numbers of NK-T cells. Interestingly, we did not detect an association between frailty and late differentiated memory T-cell subsets. Although the accuracy of the predictions of frailty from information on the immune subpopulations was low (10.7% explained variance in men and 10.5% in women), the prediction model confirmed our findings in the association study. Conclusions: We here report on observed associations of frailty with elevated neutrophil numbers, but not with late stage memory T cell subsets. Furthermore, in-depth immune cellular profiling revealed sex specific associations of frailty with several immune subpopulations. We hope that our study will prompt further investigation into the immune mechanisms associated with the development of frailty in men and women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.