Piwi-interacting RNAs (piRNAs) are small noncoding RNAs generated by a conserved pathway. Their most widely studied function involves restricting transposable elements, particularly in the germline, where piRNAs are highly abundant. Increasingly, another set of piRNAs derived from intergenic regions appears to have a role in the regulation of mRNA from early embryos and gonads. We report a more widespread expression of a limited set of piRNAs and particularly focus on their expression in the hippocampus. Deep sequencing of extracted RNA from the mouse hippocampus revealed a set of small RNAs in the size range of piRNAs. These were confirmed by their presence in the piRNA database as well as coimmunoprecipitation with MIWI. Their expression was validated by Northern blot and in situ hybridization in cultured hippocampal neurons, where signal from one piRNA extended to the dendritic compartment. Antisense suppression of this piRNA suggested a role in spine morphogenesis. Possible targets include genes, which control spine shape by a distinctive mechanism in comparison to microRNAs.
The fragile X mental retardation protein FMRP regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway and we show here that it associates with the RNA helicase MOV10, also associated with the microRNA pathway. FMRP associates with MOV10 directly and in an RNA-dependent manner and facilitates MOV10-association with RNAs in brain and cells suggesting a cooperative interaction. We identified the RNAs recognized by MOV10 using RNA-IP and iCLIP. Examination of the fate of MOV10 on RNAs revealed a dual function for MOV10 in regulating translation: it facilitates microRNA-mediated translation of some RNAs but also increases expression of other RNAs by preventing AGO2 function. The latter subset was also bound by FMRP in close proximity to the MOV10 binding site, suggesting that FMRP prevents MOV10-mediated microRNA suppression. We have identified a new mechanism for FMRP-mediated translational regulation through its association with MOV10.
We report an aptamer discovery technology that reproducibly yields higher affinity aptamers in fewer rounds compared to conventional selection. Our method (termed particle display) transforms libraries of solution-phase aptamers into “aptamer particles”, each displaying many copies of a single sequence on its surface. We then use fluorescence-activated cell sorting (FACS) to individually measure the relative affinities of >108 aptamer particles and sort them in a high-throughput manner. Through mathematical analysis, we identified experimental parameters that enable optimal screening, and demonstrate enrichment performance that exceeds the theoretical maximum achievable with conventional selection by many orders of magnitude. We used particle display to obtain high-affinity DNA aptamers for four different protein targets in three rounds, including proteins for which previous DNA aptamer selection efforts have been unsuccessful. We believe particle display offers an extraordinarily efficient mechanism for generating high quality aptamers in a rapid and economic manner, towards accelerated exploration of the human proteome.
With a dataset of more than 600 million small RNAs deeply sequenced from mouse hippocampal and staged sets of mouse cells that underwent reprogramming to induced pluripotent stem cells, we annotated the stem–loop precursors of the known miRNAs to identify isomoRs (miRNA-offset RNAs), loops, non-preferred strands, and guide strands. Products from both strands were readily detectable for most miRNAs. Changes in the dominant isomiR occurred among the cell types, as did switches of the preferred strand. The terminal nucleotide of the dominant isomiR aligned well with the dominant off-set sequence suggesting that Drosha cleavage generates most miRNA reads without terminal modification. Among the terminal modifications detected, most were non-templated mono- or di-nucleotide additions to the 3′-end. Based on the relative enrichment or depletion of specific nucleotide additions in an Ago-IP fraction there may be differential effects of these modifications on RISC loading. Sequence variation of the two strands at their cleavage sites suggested higher fidelity of Drosha than Dicer. These studies demonstrated multiple patterns of miRNA processing and considerable versatility in miRNA target selection.
BackgroundThe biphasic life cycle with pelagic larva and benthic adult stages is widely observed in the animal kingdom, including the Porifera (sponges), which are the earliest branching metazoans. The demosponge, Amphimedon queenslandica, undergoes metamorphosis from a free-swimming larva into a sessile adult that bears no morphological resemblance to other animals. While the genome of A. queenslandica contains an extensive repertoire of genes very similar to that of complex bilaterians, it is as yet unclear how this is drawn upon to coordinate changing morphological features and ecological demands throughout the sponge life cycle.ResultsTo identify genome-wide events that accompany the pelagobenthic transition in A. queenslandica, we compared global gene expression profiles at four key developmental stages by sequencing the poly(A) transcriptome using SOLiD technology. Large-scale changes in transcription were observed as sponge larvae settled on the benthos and began metamorphosis. Although previous systematics suggest that the only clear homology between Porifera and other animals is in the embryonic and larval stages, we observed extensive use of genes involved in metazoan-associated cellular processes throughout the sponge life cycle. Sponge-specific transcripts are not over-represented in the morphologically distinct adult; rather, many genes that encode typical metazoan features, such as cell adhesion and immunity, are upregulated. Our analysis further revealed gene families with candidate roles in competence, settlement, and metamorphosis in the sponge, including transcription factors, G-protein coupled receptors and other signaling molecules.ConclusionsThis first genome-wide study of the developmental transcriptome in an early branching metazoan highlights major transcriptional events that accompany the pelagobenthic transition and point to a network of regulatory mechanisms that coordinate changes in morphology with shifting environmental demands. Metazoan developmental and structural gene orthologs are well-integrated into the expression profiles at every stage of sponge development, including the adult. The utilization of genes involved in metazoan-associated processes throughout sponge development emphasizes the potential of the genome of the last common ancestor of animals to generate phenotypic complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.