Our work centers on understanding how the extracellular matrix molecule tenascin-C regulates neuronal growth. We have found that the region of tenascin-C containing only alternately spliced fibronectin type-III repeat D, called fnD, when used by itself, dramatically increases neurite outgrowth in culture. We used overlapping synthetic peptides to localize the neurite outgrowth-promoting site within fnD to a 15 amino acid sequence, called D5. An antibody against D5 blocked promotion of neurite outgrowth by fnD as well as tenascin-C, indicating that this peptide sequence is functional in the context of the native molecule. Further testing of shorter synthetic peptides restricted the neurite outgrowth-promoting site to eight amino acids, VFDNFVLK. Of these, "FD" and "FV" are conserved in tenascin-C sequences derived from all the species available in the GenBank. To investigate the hypothesis that FD and FV are critical for the interaction with neurons, we tested a recombinant fnD protein and synthetic peptides with alterations in FD and/or FV. These molecules did not facilitate process extension, suggesting that the conserved amino acids are required for formation of the active site in fnD. We next investigated whether VFDNFVLK could be used as a reagent to overcome the neurite outgrowth inhibitory properties of chondroitin sulfate proteoglycans, the major inhibitory molecules in the glial scar. The peptide significantly enhanced outgrowth on proteoglycans and was more effective than laminin-1, L1-Fc, or intact tenascin-C, thus demonstrating the potential applicability of tenascin-C regions as therapeutic reagents.
Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the 1-subunit of L-type voltage-dependent Ca 2؉ channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca 2؉ channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca 2؉ -induced cell death by modulating Ca 2؉ channels and promote neurite outgrowth via FKBP52 binding.immunophilin ͉ L-type voltage-gated calcium channel ͉ natural products ͉ neurodegeneration ͉ stroke
The region of tenascin-C containing only alternately spliced fibronectin type-III repeat D (fnD) increases neurite outgrowth by itself and also as part of tenascin-C. We previously localized the active site within fnD to an eight amino acid sequence unique to tenascin-C, VFDNFVLK, and showed that the amino acids FD and FV are required for activity. The purpose of this study was to identify the neuronal receptor that interacts with VFDNFVLK and to investigate the hypothesis that FD and FV are important for receptor binding. Functionblocking antibodies against both ␣7 and 1 integrin subunits were found to abolish VFDNFVLK-mediated process extension from cerebellar granule neurons. VFDNFVLK but not its mutant, VSPNGSLK, induced clustering of neuronal 1 integrin immunoreactivity. This strongly implicates FD and FV as important structural elements for receptor activation. Moreover, biochemical experiments revealed an association of the ␣71 integrin with tenascin-C peptides containing the VFDNFVLK sequence but not with peptides with alterations in FD and/or FV. These findings are the first to provide evidence that the ␣71 integrin mediates a response to tenascin-C and the first to demonstrate a functional role for the ␣71 integrin receptor in CNS neurons.
Tenascin-C has been implicated in regulation of both neurite outgrowth and neurite guidance. We have shown previously that a particular region of tenascin-C has powerful neurite outgrowth-promoting actions in vitro. This region consists of the alternatively spliced fibronectin type-III (FN-III) repeats A-D and is abbreviated fnA-D. The purpose of this study was to investigate whether fnA-D also provides neurite guidance cues and whether the same or different sequences mediate outgrowth and guidance. We developed an assay to quantify neurite behavior at sharp substrate boundaries and found that neurites demonstrated a strong preference for fnA-D when given a choice at a poly-L-lysine-fnA-D interface, even when fnA-D was intermingled with otherwise repellant molecules. Furthermore, neurites preferred cells that overexpressed the largest but not the smallest tenascin-C splice variant when given a choice between control cells and cells transfected with tenascin-C. The permissive guidance cues of large tenascin-C expressed by cells were mapped to fnA-D. Using a combination of recombinant proteins corresponding to specific alternatively spliced FN-III domains and monoclonal antibodies against neurite outgrowth-promoting sites, we demonstrated that neurite outgrowth and guidance were facilitated by distinct sequences within fnA-D. Hence, neurite outgrowth and neurite guidance mediated by the alternatively spliced region of tenascin-C are separable events that can be independently regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.