Self-healing chemistry used for damage repair have not previously been demonstrated for free-radical polymerization pathways. However, this chemistry is important for addition polymers such as poly(methyl methacrylate) used in bone cement and epoxy vinyl ester used in dental resins. Self-healing biomaterials offer the potential for safer and longer lasting implants and restoratives by slowing or arresting crack damage. In the free-radical self-healing system reported here, the three components required for polymerization (free-radical peroxide initiator, tertiary amine activator, and vinyl acrylate monomers) are compartmentalized into two separate microcapsules-one containing the peroxide initiator, and the other containing both monomer and activator. Crack damage ruptures the capsules so that the three components mix and react to form a new polymer that effectively rebonds the crack and restores approximately 75% of the original fracture toughness. Optimal healing is obtained by a systematic evaluation of the effect of monomer, initiator, and activator concentration on healing performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.