Abstract. Arthropod predators and parasitoids provide valuable ecosystem services in agricultural crops by suppressing populations of insect herbivores. Many natural enemies are influenced by non-crop habitat surrounding agricultural fields, and understanding if, and at what scales, land use patterns influence natural enemies is essential to predicting how landscape alters biological control services. Here we focus on biological control of soybean aphid, Aphis glycines Matumura, a specialist crop pest recently introduced to the north-central United States. We measured the amount of biological control service supplied to soybean in 26 replicate fields across Michigan, Wisconsin, Iowa, and Minnesota across two years (2005)(2006). We measured the impact of natural enemies by experimentally excluding or allowing access to soybean aphid infested plants and comparing aphid population growth over 14 days. We also monitored aphid and natural enemy populations at large in each field. Predators, principally coccinellid beetles, dominated the natural enemy community of soybean in both years. In the absence of aphid predators, A. glycines increased significantly, with 5.3-fold higher aphid populations on plants in exclusion cages vs. the open field after 14 days. We calculated a biological control services index (BSI) based on relative suppression of aphid populations and related it to landscape diversity and composition at multiple spatial scales surrounding each site. We found that BSI values increased with landscape diversity, measured as Simpson's D. Landscapes dominated by corn and soybean fields provided less biocontrol service to soybean compared with landscapes with an abundance of crop and non-crop habitats. The abundance of Coccinellidae was related to landscape composition, with beetles being more abundant in landscapes with an abundance of forest and grassland compared with landscapes dominated by agricultural crops. Landscape diversity and composition at a scale of 1.5 km surrounding the focal field explained the greatest proportion of the variation in BSI and Coccinellidae abundance. This study indicates that natural enemies provide a regionally important ecosystem service by suppressing a key soybean pest, reducing the need for insecticide applications. Furthermore, it suggests that management to maintain or enhance landscape diversity has the potential to stabilize or increase biocontrol services.
Artículo de publicación ISIThe harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people
Numerous studies show that landscape simplification reduces abundance and diversity of natural enemies in agroecosystems, but its effect on natural pest control remains poorly quantified. Further, natural enemy impacts on pest populations have usually been estimated for a limited number of taxa and have not considered interactions among predator species. In a quantitative synthesis with data collected from several cropping systems in Europe and North America, we analyzed how the level and within-field spatial stability of natural pest control services was related to the simplification of the surrounding landscape. All studies used aphids as a model species and exclusion cages to measure aphid pest control. Landscape simplification was quantified by the proportion of cultivated land within a 1 km radius around each plot. We found a consistent negative effect of landscape simplification on the level of natural pest control, despite interactions among enemies. Average level of pest control was 46 % lower in homogeneous landscapes dominated by cultivated land, as compared with more complex landscapes. Landscape simplification did not affect the amount of positive or negative interactions among ground-dwelling and vegetation-dwelling predators, or the within-field stability of pest control. Our synthesis demonstrates that agricultural intensification through landscape simplification has negative effects on the level of natural pest control with important implications for management to maintain and enhance ecosystem services in agricultural landscapes. Specifically, preserving and restoring semi-natural habitats emerges as a fundamental first step to maintain and enhance pest control services provided by predatory arthropods to agriculture.
Beneficial arthropods, including native bees, predators, and parasitoids, provide valuable ecosystem services worth $8 billion to US agriculture each year. These arthropod‐mediated ecosystem services (AMES) include crop pollination and pest control, which help to maintain agricultural productivity and reduce the need for pesticide inputs. Maximizing survival and reproduction of beneficial arthropods requires provision of pollen and nectar resources that are often scarce in modern agricultural landscapes. Increasingly, native plants are being evaluated for this purpose. Native plants can outperform recommended non‐natives and also provide local adaptation, habitat permanency, and support of native biodiversity. We predict that the success of insect conservation programs using flowering plants to increase AMES on farmland will depend on landscape context, with the greatest success in landscapes of moderate complexity. Reintegration of native plants into agricultural landscapes has the potential to support multiple conservation goals, and will require the collaboration of researchers, conservation educators, and native plant experts.
Citizen scientists have the potential to play a crucial role in the study of rapidly changing lady beetle (Coccinellidae) populations. We used data derived from three coccinellid‐focused citizen‐science programs to examine the costs and benefits of data collection from direct citizen‐science (data used without verification) and verified citizen‐science (observations verified by trained experts) programs. Data collated through direct citizen science overestimated species richness and diversity values in comparison to verified data, thereby influencing interpretation. The use of citizen scientists to collect data also influenced research costs; our analysis shows that verified citizen science was more cost effective than traditional science (in terms of data gathered per dollar). The ability to collect a greater number of samples through direct citizen science may compensate for reduced accuracy, depending on the type of data collected and the type(s) and extent of errors committed by volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.