Under-utilised orphan crops hold the key to diversified and climate-resilient food systems. Here, we report on orphan crop genomics using the case of Lablab purpureus (L.) Sweet (lablab) - a legume native to Africa and cultivated throughout the tropics for food and forage. Our Africa-led plant genome collaboration produces a high-quality chromosome-scale assembly of the lablab genome. Our assembly highlights the genome organisation of the trypsin inhibitor genes - an important anti-nutritional factor in lablab. We also re-sequence cultivated and wild lablab accessions from Africa confirming two domestication events. Finally, we examine the genetic and phenotypic diversity in a comprehensive lablab germplasm collection and identify genomic loci underlying variation of important agronomic traits in lablab. The genomic data generated here provide a valuable resource for lablab improvement. Our inclusive collaborative approach also presents an example that can be explored by other researchers sequencing indigenous crops, particularly from low and middle-income countries (LMIC).
Orphan crops (also described as underutilised and neglected crops) hold the key to diversified and climate-resilient food systems. After decades of neglect, the genome sequencing of orphan crops is gathering pace, providing the foundations for their accelerated domestication and improvement. Recent attention has however turned to the gross under-representation of researchers in Africa in the genome sequencing efforts of their indigenous orphan crops. Here we report a radically inclusive approach to orphan crop genomics using the case of Lablab purpureus (L.) Sweet (syn. Dolichos lablab, or hyacinth bean) – a legume native to Africa and cultivated throughout the tropics for food and forage. Our Africa-led South-North plant genome collaboration produced a high-quality chromosome-scale assembly of the lablab genome – the first chromosome-scale plant genome assembly locally produced in Africa. We also re-sequenced cultivated and wild accessions of lablab from Africa confirming two domestication events and examined the genetic diversity in lablab germplasm conserved in Africa. Our approach provides a valuable resource for lablab improvement and also presents a model that could be explored by other researchers sequencing indigenous crops particularly from Low and middle income countries (LMIC).
The past decade has seen advancement in high-throughput sequencing technologies resulting in rapid accumulation of genomic data from microbial communities. While this growth in sequence data and gene discovery is impressive, the majority of microbial gene functions remain uncharacterized.
Orphan crops (also described as underutilised and neglected crops) hold the key to diversified and climate-resilient food systems. After decades of neglect, the genome sequencing of orphan crops is gathering pace, providing the foundations for their accelerated domestication and improvement. Recent attention has however turned to the gross under-representation of researchers in Africa in the genome sequencing efforts of their indigenous orphan crops. Here we report a radically inclusive approach to orphan crop genomics using the case of Lablab purpureus (L.) Sweet (syn. Dolichos lablab, or hyacinth bean) – a legume native to Africa and cultivated throughout the tropics for food and forage. Our Africa-led South-North plant genome collaboration produced a high-quality chromosome-scale assembly of the lablab genome – the first chromosome-scale plant genome assembly locally produced in Africa. We also re-sequenced cultivated and wild accessions of lablab from Africa confirming two domestication events and examined the genetic diversity in lablab germplasm conserved in Africa. Our approach provides a valuable resource for lablab improvement and also presents a model that could be explored by other researchers sequencing indigenous crops particularly from Low and middle income countries (LMIC).
The invasion of human erythrocytes by Plasmodium falciparum merozoites requires interaction between parasite ligands and host receptors. Interaction of PfRh5-CyRPA-Ripr protein complex with basigin, an erythrocyte surface receptor, via PfRh5 is essential for erythrocyte invasion. Antibodies raised against each antigen component of the complex have demonstrated erythrocyte invasion inhibition, making these proteins potential blood-stage vaccine candidates. Genetic polymorphisms present a significant challenge in developing efficacious vaccines, leading to variant-specific immune responses. This study investigated the genetic variations of the PfRh5 complex proteins in P. falciparum isolates from Lake Victoria islands, Western Kenya. Here, twenty-nine microscopically confirmed P. falciparum field samples collected from islands in Lake Victoria between July 2014 and July 2016 were genotyped by whole genome sequencing, and results compared to sequences mined from the GenBank database, from a study conducted in Kilifi, as well as other sequences from the MalariaGEN repository. We analyzed the frequency of polymorphisms in the PfRh5 protein complex proteins, PfRh5, PfCyRPA, PfRipr, and PfP113, and their location mapped on the 3D protein complex structure. We identified a total of 58 variants in the PfRh5 protein complex. PfRh5 protein was the most polymorphic with 30 SNPs, while PfCyRPA was relatively conserved with 3 SNPs. The minor allele frequency of the SNPs ranged between 1.9% and 21.2%. Ten high-frequency alleles (>5%) were observed in PfRh5 at codons 147, 148, 277, 410, and 429 and in PfRipr at codons 190, 255, 259, and 1003. A SNP was located in protein-protein interaction region C203Y and F292V of PfRh5 and PfCyRPA, respectively. Put together, this study revealed low polymorphisms in the PfRh5 invasion complex in the Lake Victoria parasite population. However, the two mutations identified on the protein interaction regions prompts for investigation on their impacts on parasite invasion process to support the consideration of PfRh5 components as potential malaria vaccine candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.