The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (⌬hcp1 through ⌬hcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD 50 s) for the ⌬hcp2 through ⌬hcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD 50 for the ⌬hcp1 mutant was >10 3 bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the ⌬hcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.
SummaryCo-ordinated regulation of gene expression is required for the transmission and survival of Borrelia burgdorferi in different hosts. The sigma factor RpoS (s S ), as regulated by RpoN (s 54 ), has been shown to regulate key virulence factors (e.g. OspC) required for these processes. As important, multiple signals (e.g. temperature, pH, cell density, oxygen) have been shown to increase the expression of s S -dependent genes; however, little is known about the signal transduction mechanisms that modulate the expression of rpoS. In this report we show that: (i) rpoS has a s 54 -dependent promoter that requires Rrp2 to activate transcription; (ii) Rrp2D123, a constitutively active form of Rrp2, activated s 54 -dependent transcription of rpoS/P-lacZ reporter constructs in Escherichia coli; (iii) quantitative reverse transcription polymerase chain reaction (QRT-PCR) experiments with reporter cat constructs in B. burgdorferi indicated that Rrp2 activated transcription of rpoS in an enhancerindependent fashion; and finally, (iv) rpoN is required for cell density-and temperature-dependent expression of rpoS in B. burgdorferi, but histidine kinase Hk2, encoded by the gene immediately upstream of rrp2, is not essential. Based on these findings, a model for regulation of rpoS has been proposed which provides mechanisms for multiple signalling pathways to modulate the expression of the s S regulon in B. burgdorferi.
BackgroundMelioidosis is a severe disease caused by Burkholderia pseudomallei. Clinical manifestations are diverse and acute infections require immediate treatment with effective antibiotics. While culture is the current diagnostic standard, it is time-consuming and has low sensitivity. In endemic areas, inaccessibility to biosafety level 3 facilities and a lack of good serodiagnostic tools can impede diagnosis and disease surveillance. Recent studies have suggested that O-polysaccharide (OPS) and hemolysin co-regulated protein 1 (Hcp1) are promising target antigens for serodiagnosis of melioidosis.Methodology/Principle findingsWe evaluated rapid ELISAs using crude antigens, purified OPS and Hcp1 to measure antibody levels in three sets of sera: (i) 419 serum samples from melioidosis patients, Thai and U.S. healthy donors, (ii) 120 serum samples from patients with other bacterial infections, and (iii) 423 serum samples from 200 melioidosis patients obtained upon admission and at 12 and 52 weeks post-recovery. We observed significantly higher antibody levels using the crude antigen prepared from wild type B. pseudomallei K96243 compared to that of an OPS-mutant. The areas under receiver operator characteristics (AUROCCs) for diagnosis were compared for individual Hcp1-ELISA or OPS-ELISA or combined Hcp1/OPS-ELISA. For Thai donors, AUROCCs were highest and comparable between the Hcp1-ELISA and the combined Hcp1/OPS-ELISA (0.95 versus 0.94). For U.S. donors, the AUROCC was highest for the combined Hcp1/OPS-ELISA (0.96). Significantly higher seropositivity was observed in diabetic patients compared to those without diabetes for both the Hcp1-ELISA (87.3% versus 69.7%) and OPS-ELISA (88.1% versus 60.6%). Although antibody levels for Hcp1 were highest upon admission, the titers declined by week 52 post-recovery.Conclusions/SignificanceHcp1 and OPS are promising candidates for serodiagnosis of melioidosis in different groups of patients. The Hcp1-ELISA performed better than the OPS-ELISA in endemic areas, thus, Hcp1 represents a promising target antigen for the development of POC tests for acute melioidosis.
Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the “gold standard” for the diagnosis of melioidosis; results can take 3–7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.
Burkholderia pseudomallei, the etiologic agent of melioidosis, causes severe disease in humans and animals. Diagnosis and treatment of melioidosis can be challenging, and no licensed vaccines currently exist. Several studies have shown that this pathogen expresses a variety of structurally conserved protective antigens that include cell surface polysaccharides and cell-associated and cell-secreted proteins. Based on those findings, such antigens have become important components of the subunit vaccine candidates that we are currently developing. In the present study, the 6-deoxyheptan capsular polysaccharide (CPS) from B. pseudomallei was purified, chemically activated, and covalently linked to recombinant CRM197 diphtheria toxin mutant (CRM197) to produce CPS-CRM197. Additionally, tandem nickel-cobalt affinity chromatography was used to prepare highly purified recombinant B. pseudomallei Hcp1 and TssM proteins. Immunization of C57BL/6 mice with CPS-CRM197 produced high-titer IgG and opsonizing antibody responses against the CPS component of the glycoconjugate, while immunization with Hcp1 and TssM produced high-titer IgG and robust gamma interferon-secreting T cell responses against the proteins. Extending upon these studies, we found that when mice were vaccinated with a combination of CPS-CRM197 and Hcp1, 100% of the mice survived a lethal inhalational challenge with B. pseudomallei. Remarkably, 70% of the survivors had no culturable bacteria in their lungs, livers, or spleens, indicating that the vaccine formulation had generated sterilizing immune responses. Collectively, these studies help to better establish surrogates of antigen-induced immunity against B. pseudomallei as well as provide valuable insights toward the development of a safe, affordable, and effective melioidosis vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.