Duloxetine 60 mg twice daily is a moderately potent CYP2D6 inhibitor, intermediate between paroxetine and sertraline. The potent CYP2D6 inhibitor paroxetine has a moderate effect on duloxetine concentrations. The results of these 2 studies suggest that caution should be used when CYP2D6 substrates and inhibitors are coadministered with duloxetine.
Major depressive disorder (MDD) poses a significant health problem and is estimated to be the third most costly and disabling disorder in the United States. Pharmacotherapy of depression has been successful, but improvements in response rates, remission rates, side effects, compliance and faster onset of therapeutic action have become prime objectives in drug development. There is considerable support for the hypothesis that dysfunctional serotonergic or noradrenergic neurotransmission may be etiological in depressed patients. Duloxetine is a balanced and potent reuptake inhibitor of serotonin (5-HT) and norepinephrine (NE) being studied as an antidepressant medication. In this review, we highlight the preclinical pharmacology, pharmacokinetic profile, and effects of duloxetine in the pharmacotherapy of depression. Evidence for 5-HT and NE reuptake inhibition by duloxetine comes from in vitro and in vivo transporter binding and functional uptake studies. Taken together with efficacy data from in vivo microdialysis, electrophysiological and behavioral studies, it is evident that duloxetine is balanced as a dual serotonin norepinephrine uptake inhibitor in vivo. The clinical efficacy and safety of duloxetine in the treatment of MDD has been studied in 6 multicenter, randomized, double-blind, placebo-controlled trials. In these studies, duloxetine was found to be effective in the treatment of emotional/psychological and painful physical symptoms associated with depression. More importantly, duloxetine appears to have better response rates and remission from depressive symptoms, perhaps due to its ability to treat a wider range of symptoms.
OBJECTIVEWe evaluated the endogenous glucose production (EGP) and glucose disposal rate (GDR) over a range of doses of basal insulin peglispro (BIL) and insulin glargine in healthy subjects. RESEARCH DESIGN AND METHODSThis was a single-center, randomized, open-label, four-period, incomplete-block, crossover study conducted in eight healthy male subjects. Subjects had 8-h euglycemic clamps performed with primed, continuous infusions of BIL (5.1 to 74.1 mU/min) in three dosing periods and insulin glargine (20 or 30 mU/m 2 /min) in a fourth period, targeted to achieve 50-100% suppression of EGP. D-[3-3 H] glucose was infused to assess rates of glucose appearance and disappearance. RESULTSMean BIL and insulin glargine concentrations (targeted to reflect the differences in intrinsic affinities of the two basal insulins) ranged from 824 to 11,400 and 212 to 290 pmol/L, respectively, and increased accordingly with increases in dose. Suppression of EGP and stimulation of GDR were observed with increasing concentrations of both insulins. At insulin concentrations where EGP was significantly suppressed, insulin glargine resulted in increased GDR. In contrast, at comparable suppression of EGP, BIL had minimal effect on GDR at lower doses and had substantially less effect on GDR than insulin glargine at higher doses. CONCLUSIONSThe novel basal insulin analog BIL has relative hepatopreferential action and decreased peripheral action, compared with insulin glargine, in healthy subjects.In vivo, insulin is secreted from pancreatic b-cells and enters the circulation via the portal vein, where on first pass the liver extracts ;40-80% (1-7). As a result, systemic circulating insulin levels are reduced compared with those in the portal vein, and subsequent insulin action in the peripheral target tissues is also reduced compared with the liver. Consequently, the relative ratio of hepatic action to peripheral action ranges between 2:1 and 4:1 (1,2,4,8-10). In contrast, when exogenous insulin is administered peripherally, insulin is distributed equally across the liver and peripheral tissues (11,12) and thus does not mimic normal physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.