The contributors Christian U. Blank is a medical oncologist and principal investigator at the Netherlands Cancer Institute. He is Professor of Haematology/oncology at the university of Regensburg, Germany, and received an MBA degree from the university of Warwick, UK. His research interests include neoadjuvant immunotherapies, targeted and biological response modifiers, and prognostic markers for cancer immunotherapies. W. Nicholas Haining is a physician-scientist and vice-President for Discovery oncology and Immunology at Merck Research Laboratories. His former academic laboratory at the Dana-Farber Cancer Institute and the Broad Institute focused on understanding the transcriptional control of T cell exhaustion and on identifying regulators of the immune response to cancer in tumour and immune cells. Werner Held's laboratory has a long-standing interest in understanding the development, differentiation and function of natural killer cells and CD8 + T cells. Current work focuses on CD8 + T cell differentiation in response to acute and chronic infections as well as cancer. Patrick G. Hogan's research centres on mechanisms and regulation of cellular calcium signalling, the biology of the nuclear factor of activated T cells (NFAT) family of transcription factors and the transcriptional control of immune cell development and function. Axel Kallies is a professor at the University of Melbourne, Australia. His laboratory studies the molecular control of CD8 + cytotoxic T cell and regulatory T cell differentiation with a focus on populations residing in non-lymphoid tissue, including healthy tissues and tumours. The Kallies laboratory has developed and applied genetic and molecular approaches to this field, including novel gene reporters, metabolic techniques, transcriptional profiling, chromatin immunoprecipitation and accessible chromatin sequencing. Enrico Lugli's laboratory is focused on understanding the biological mechanisms at the basis of memory T cell responses and homeostasis in humans and how this information can be exploited to favour antitumour immune responses in patients with cancer. The group is specialized in single-cell technologies, in particular high-dimensional flow cytometry. Rachel C. Lynn is an associate director of research at Lyell Immunopharma. She received her PhD degree from the the university of Pennsylvania, where she developed multiple preclinical chimeric antigen receptor (CAR) T cell therapy platforms. During her postdoctoral work with Crystal mackall at Stanford university, she developed models to interrogate and strategies to mitigate CAR T cell exhaustion. At Lyell Immunopharma, her research group will continue to investigate optimal strategies for adoptive T cell therapy in cancer.
Tumour-specific CD8 T cells in solid tumours are dysfunctional, allowing tumours to progress. The epigenetic regulation of T cell dysfunction and therapeutic reprogrammability (for example, to immune checkpoint blockade) is not well understood. Here we show that T cells in mouse tumours differentiate through two discrete chromatin states: a plastic dysfunctional state from which T cells can be rescued, and a fixed dysfunctional state in which the cells are resistant to reprogramming. We identified surface markers associated with each chromatin state that distinguished reprogrammable from non-reprogrammable PD1hi dysfunctional T cells within heterogeneous T cell populations from tumours in mice; these surface markers were also expressed on human PD1hi tumour-infiltrating CD8 T cells. Our study has important implications for cancer immunotherapy as we define key transcription factors and epigenetic programs underlying T cell dysfunction and surface markers that predict therapeutic reprogrammability.
SUMMARY CD8+ T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8+ T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.